<p class="ql-block"><span style="color:rgb(57, 181, 74); font-size:22px;">一、两线和最小值题海中的一朵浪花</span></p> <p class="ql-block"><span style="color:rgb(237, 35, 8); font-size:20px;">1、</span><span style="font-size:20px;">如图,菱形ABCD中,∠ABC=60°, AB=3, E, F分别是AD, BD上两个动点,且BF=DE,连接AF, CE,求AF+CE的最小值.</span></p> <p class="ql-block" style="text-align:center;"><span style="font-size:20px; color:rgb(22, 126, 251);">(一)读懂一类最小值试题的形特点</span></p><p class="ql-block"><span style="font-size:20px; color:rgb(22, 126, 251);"> 解几何最值试题,读懂图形的情景特点,很重要!很重要!</span></p><p class="ql-block"><span style="color:rgb(237, 35, 8); font-size:20px;">(1)</span><span style="font-size:20px;">从线段的视角看,图形具有二个形态特点:</span></p><p class="ql-block"><span style="font-size:20px;">①两动态线段</span><span style="font-size:20px; color:rgb(22, 126, 251);">(AF、CE)</span><span style="font-size:20px;">的两线性动端点</span><span style="font-size:20px; color:rgb(22, 126, 251);">(F、E)</span><span style="font-size:20px;">是离散形态;</span></p><p class="ql-block"><span style="font-size:20px;">②与两动端点</span><span style="font-size:20px; color:rgb(22, 126, 251);">(F、E)</span><span style="font-size:20px;">分别相连的线段</span><span style="font-size:20px; color:rgb(22, 126, 251);">(BF=DE)</span><span style="font-size:20px; color:rgb(1, 1, 1);">相等</span><span style="font-size:20px;">.</span></p><p class="ql-block"><span style="font-size:20px; color:rgb(237, 35, 8);"> 即是两离散动端点的两线</span><span style="font-size:20px; color:rgb(1, 1, 1);">(AF、CE)</span><span style="font-size:20px; color:rgb(237, 35, 8);">与动等线</span><span style="font-size:20px; color:rgb(1, 1, 1);">(BF=DE)</span><span style="font-size:20px; color:rgb(237, 35, 8);">联动的型态.</span></p><p class="ql-block"><span style="font-size:20px;"> 简称为:</span><span style="font-size:20px; color:rgb(237, 35, 8);">两线与动等线联动时</span><span style="font-size:20px; color:rgb(22, 126, 251);">和的</span><span style="font-size:20px; color:rgb(57, 181, 74);">最小值</span><span style="font-size:20px; color:rgb(237, 35, 8);">.</span></p> <p class="ql-block"><span style="font-size:20px; color:rgb(237, 35, 8);">(2)</span><span style="font-size:20px; color:rgb(57, 181, 74);">以三角形的视野看,</span><span style="font-size:20px; color:rgb(1, 1, 1);">AF+CE中的一条线段,与动等线BF=DE中的一条线段,构成两个只有一个动顶点的三角形.</span></p><p class="ql-block"><span style="font-size:20px;"> 一个是以AF、BF为边的△AFB,</span></p><p class="ql-block"><span style="font-size:20px;">另一个是以CE、DE为边的△CED.</span></p> <p class="ql-block"><span style="font-size:20px; color:rgb(22, 126, 251);">(二)消化吸收解此类两线和最小值试题的计谋技法</span></p> <p class="ql-block"><span style="color:rgb(237, 35, 8); font-size:20px;">变线计谋:</span><span style="color:rgb(1, 1, 1); font-size:20px;">为把</span><span style="font-size:20px;">两动端点离散的两线和,转化为共动端点的折线和形态,需</span><span style="font-size:20px; color:rgb(1, 1, 1);">变线两线和中的一条线段. 所以,应以想变线的那条线段为边的三角形作为模特三角形,然后利用设置的条件等线“智</span><span style="font-size:20px;">造”与模特三角形全等的三角形变线.</span></p> <p class="ql-block"><span style="font-size:20px; color:rgb(176, 79, 187);">变线技法1:若变线CE,则取以CE为边的△CED为模特三角形,并</span><span style="font-size:20px; color:rgb(57, 181, 74);">以DE定端点D处的∠EDC和边DC为模特.</span></p><p class="ql-block"><span style="font-size:20px; color:rgb(57, 181, 74);"> 然后在与</span><span style="font-size:20px; color:rgb(22, 126, 251);">DE对应相等的BF</span><span style="font-size:20px; color:rgb(176, 79, 187);">定端点B处,</span><span style="font-size:20px; color:rgb(22, 126, 251);">依次“智造”角和边等于模特角和模特边.</span></p><p class="ql-block"><span style="font-size:20px;">即如图1,</span></p><p class="ql-block"><span style="font-size:20px;"> 作∠FBG=</span><span style="font-size:20px; color:rgb(22, 126, 251);">模特</span><b style="font-size:20px; color:rgb(22, 126, 251);">∠EDC</b><span style="font-size:20px;">=60°,</span></p><p class="ql-block"><span style="font-size:20px;"> 作BG=</span><span style="font-size:20px; color:rgb(22, 126, 251);">模特</span><b style="font-size:20px; color:rgb(22, 126, 251);">DC</b><span style="font-size:20px;">=3, </span></p><p class="ql-block"><span style="font-size:20px;"> 又BF=DE,则连接FG,</span></p><p class="ql-block"><span style="font-size:20px;">得△GFB≌模特△CED(SAS),</span></p><p class="ql-block"><span style="font-size:20px;"> ∴GF=CE,</span></p><p class="ql-block"><span style="color:rgb(237, 35, 8); font-size:20px;"> 则两动端点离散的两线和AF+CE,转化为共动端点F的折线和AF+GF.</span></p> <p class="ql-block"><span style="color:rgb(237, 35, 8); font-size:20px;">闻香悟道:</span><span style="font-size:20px;">构造全等三角形,应有强烈且清晰的“模特思考”.即先确定模特三角形,再比照模特三角形中的模特角、模特边,智造对应的等角、等边.</span></p> <p class="ql-block"><span style="font-size:20px; color:rgb(176, 79, 187);">变线技法2:若变线AF,则取以AF为边的△AFB为模特三角形,并</span><span style="font-size:20px; color:rgb(57, 181, 74);">以BF定端点B处的∠FBA和边BA为模特.</span></p><p class="ql-block"><span style="font-size:20px; color:rgb(57, 181, 74);"> </span><span style="font-size:20px; color:rgb(22, 126, 251);">然后在与BF对应相等的DE定端点D处,依次“智造”角和边与与模特角和模特边相等.</span></p><p class="ql-block"><span style="font-size:20px; color:rgb(1, 1, 1);">即如图2,</span></p><p class="ql-block"><span style="font-size:20px; color:rgb(1, 1, 1);"> 作∠EDG=</span><span style="font-size:20px; color:rgb(22, 126, 251);">模特</span><b style="font-size:20px; color:rgb(22, 126, 251);">∠FBA</b><span style="font-size:20px; color:rgb(1, 1, 1);">=30°,</span></p><p class="ql-block"><span style="font-size:20px; color:rgb(1, 1, 1);"> 作DG=</span><span style="font-size:20px; color:rgb(22, 126, 251);">模特</span><b style="font-size:20px; color:rgb(22, 126, 251);">BA</b><span style="font-size:20px; color:rgb(1, 1, 1);">=3, </span></p><p class="ql-block"><span style="font-size:20px; color:rgb(1, 1, 1);"> 又BF=DE,则连接EG,</span></p><p class="ql-block"><span style="font-size:20px; color:rgb(1, 1, 1);">得△GED≌模特△AFB(SAS),</span></p><p class="ql-block"><span style="font-size:20px; color:rgb(1, 1, 1);"> ∴GE=AF,</span></p><p class="ql-block"><span style="font-size:20px; color:rgb(1, 1, 1);">∴AF+CE=GE+CE,</span></p><p class="ql-block"><span style="font-size:20px; color:rgb(237, 35, 8);"> 则两动端点离散的两线和AF+CE,转化为共动端点E的折线和GE+CE.</span></p> <p class="ql-block"><span style="font-size:20px; color:rgb(22, 126, 251);">③求折线和的最小值.</span></p><p class="ql-block"><span style="font-size:20px; color:rgb(22, 126, 251);"> </span><span style="font-size:20px; color:rgb(1, 1, 1);">利用菱形ABCD中已知的边、角条件和能求出的相关边、角数量,求折线和的最小值.</span></p> <p class="ql-block"><span style="font-size:20px;"> 如图1,连接两定点AG,</span></p><p class="ql-block"><span style="font-size:20px;"> 得AF+CE=AF+GF≥AG,</span></p><p class="ql-block"><span style="font-size:20px;">∵∠ABG=∠ABF+∠FBG</span></p><p class="ql-block"><span style="font-size:20px;"> =30°+60°=90°,</span></p><p class="ql-block"><span style="font-size:20px;"> BA=BG=3,</span></p><p class="ql-block"><span style="font-size:20px;">∴Rt△BAG的斜边AG=3√2,</span></p><p class="ql-block"><span style="font-size:20px;">∴AF+CE的最小值为3√2.</span></p> <p class="ql-block"><span style="font-size:20px;">如图2,连两定点CG,</span></p><p class="ql-block"><span style="font-size:20px;"> 得AF+CE=GE+CE≥CG,</span></p><p class="ql-block"><span style="font-size:20px;">∵∠CDG=∠CDE+∠EDG</span></p><p class="ql-block"><span style="font-size:20px;"> =60°+30°=90°,</span></p><p class="ql-block"><span style="font-size:20px;"> DC=DG=3,</span></p><p class="ql-block"><span style="font-size:20px;">∴Rt△DCG的斜边CG=3√2,</span></p><p class="ql-block"><span style="font-size:20px;">∴AF+CE的最小值为3√2.</span></p><p class="ql-block"><span style="font-size:20px;"></span></p><p class="ql-block"><span style="font-size:20px;"><span class="ql-cursor"></span></span></p> <p class="ql-block"><span style="color:rgb(237, 35, 8); font-size:20px;">2、</span><span style="font-size:20px;">锐角△ABC中,AC=10,BC=8,∠ABC=60°,点D、E分别是边AB、AC上的动点,并且满足AD=CE,求CD+BE的最小值.</span></p> <p class="ql-block"><span style="color:rgb(237, 35, 8); font-size:20px;">辩识图形情景</span><span style="font-size:20px;">:</span></p><p class="ql-block"><span style="font-size:20px;"> </span><b style="font-size:20px; color:rgb(22, 126, 251);">由题设的AD=CE,求CD+BE的最小值,</b><span style="font-size:20px;">认识到两个离散动端点D、E分别将AD和CD,CE和BE,链接成动态△ADC和动态△CEB.</span></p><p class="ql-block"><span style="font-size:20px;">∴属</span><b style="font-size:20px; color:rgb(22, 126, 251);">“两线与动等线联动"型态下的两线和最小值.</b></p><p class="ql-block"><span style="font-size:20px;"> 则激活三步解析思维求解.</span></p><p class="ql-block"><span style="color:rgb(22, 126, 251); font-size:20px;">解法1:</span></p><p class="ql-block"><span style="color:rgb(237, 35, 8); font-size:20px;">第一步:确定模特三角形</span></p><p class="ql-block"><span style="font-size:20px;"> 若变线BE,则取以BE为边的△CEB为模特三角形,并以CE定端点C处的</span><b style="font-size:20px; color:rgb(22, 126, 251);">∠ECB为模特角,CB为模特边.</b></p> <p class="ql-block"><span style="color:rgb(237, 35, 8); font-size:20px;">第二步:智造全等三角形变线.</span></p><p class="ql-block"><span style="font-size:20px;"> 从与CE对应相等的</span><span style="font-size:20px; color:rgb(176, 79, 187);">AD定端点A出发,</span><span style="font-size:20px;">依次“智造”对应的等角和等边, </span></p><p class="ql-block"><span style="font-size:20px;"> 即作∠DAF=</span><b style="font-size:20px; color:rgb(22, 126, 251);">模特角∠ECB</b><span style="font-size:20px;">,</span></p><p class="ql-block"><span style="font-size:20px;"> 作AF=</span><b style="font-size:20px; color:rgb(22, 126, 251);">模特边CB</b><span style="font-size:20px;">=8, </span></p><p class="ql-block"><span style="font-size:20px;"> 又AD=CE,则连接DF,</span></p><p class="ql-block"><span style="font-size:20px;"> 得△ADF≌模特△CEB(SAS),</span></p><p class="ql-block"><span style="font-size:20px;"> ∴FD=BE,</span></p><p class="ql-block"><span style="font-size:20px;">∴CD+BE=CD+FD,</span></p><p class="ql-block"><span style="font-size:20px;"> 则将</span><span style="font-size:20px; color:rgb(22, 126, 251);">两动端点离散的两线和CD+BE,转化为折线和CD+FD</span><span style="font-size:20px;">的目标达成.</span></p> <p class="ql-block"><span style="font-size:20px;"> 连接两定点CF,得CD+FD≥CD,</span></p><p class="ql-block"><span style="font-size:20px;"> ∴CD+BE≥CF,</span></p><p class="ql-block"><span style="color:rgb(237, 35, 8); font-size:20px;">第三步:求CD的长</span></p><p class="ql-block"><span style="color:rgb(237, 35, 8); font-size:20px;"> </span><span style="color:rgb(1, 1, 1); font-size:20px;">∵∠CAF=∠CAB+</span><b style="color:rgb(22, 126, 251); font-size:20px;">∠DAF</b></p><p class="ql-block"><span style="color:rgb(1, 1, 1); font-size:20px;"> =∠CAB+</span><b style="color:rgb(22, 126, 251); font-size:20px;">∠ECB</b></p><p class="ql-block"><span style="color:rgb(1, 1, 1); font-size:20px;"> =180°-∠ABC</span></p><p class="ql-block"><span style="color:rgb(1, 1, 1); font-size:20px;"> =180°-60°=120°,</span></p><p class="ql-block"><span style="color:rgb(176, 79, 187); font-size:20px;">∴斜△ACF可解</span><span style="color:rgb(1, 1, 1); font-size:20px;">.</span></p><p class="ql-block"><span style="font-size:20px;"> 作FH⊥CA的延长线于H,</span></p><p class="ql-block"><span style="font-size:20px;"> 得∠FAH=180°-120°=60°,</span></p><p class="ql-block"><span style="font-size:20px;">∴AH=½AF=4,HF=√3AH=4√3,</span></p><p class="ql-block"><span style="font-size:20px;">∴HC=AC+AH=10+4=14,</span></p><p class="ql-block"><span style="font-size:20px;">∴CF²=HC²+HF²=14²+(4√3)²</span></p><p class="ql-block"><span style="font-size:20px;"> =4(49+12)=4×61,</span></p><p class="ql-block"><span style="font-size:20px;">∴CF=2√61,</span></p><p class="ql-block"><span style="font-size:20px;">∴CD+BE的最小值是2√61.</span></p><p class="ql-block"><br></p><p class="ql-block"><span style="color:rgb(237, 35, 8); font-size:20px;">解法2: ①若变线CD,则取以CD为边的△ADC为模特三角形,</span><span style="font-size:20px;">并以AD定端点A处的</span><span style="font-size:20px; color:rgb(22, 126, 251);">∠</span><b style="font-size:20px; color:rgb(22, 126, 251);">DAC为模特角,AC为模特边.</b></p> <p class="ql-block"><span style="font-size:20px;"> </span><span style="font-size:20px; color:rgb(237, 35, 8);">②</span><span style="font-size:20px;">从与AD对应相等的</span><span style="font-size:20px; color:rgb(176, 79, 187);">CE定端点C出发,</span><span style="font-size:20px;">依次“智造”对应的等角和等边, </span></p><p class="ql-block"><span style="font-size:20px;"> 即过点C作CF∥AB,智造∠ECF=</span><b style="font-size:20px; color:rgb(22, 126, 251);">模特角∠DAC,</b></p><p class="ql-block"><span style="font-size:20px;"> 取CF=</span><b style="font-size:20px; color:rgb(22, 126, 251);">模特边AC</b><span style="font-size:20px;">=10, </span></p><p class="ql-block"><span style="font-size:20px;"> 又CE=AD,则连接EF,</span></p><p class="ql-block"><span style="font-size:20px;"> 得△CEF≌模特△ADC(SAS),</span></p><p class="ql-block"><span style="font-size:20px;"> ∴FE=CD,</span></p><p class="ql-block"><span style="font-size:20px;">∴CD+BE=FE+BE.</span></p><p class="ql-block"><span style="font-size:20px;"> 则</span><span style="font-size:20px; color:rgb(22, 126, 251);">两动端点离散的两线和CD+BE,转化为共动端点E的折线和FE+BE.</span></p> <p class="ql-block"><span style="font-size:20px;"> 连接两定点BF,得EF+BE≥BF,</span></p><p class="ql-block"><span style="font-size:20px;"> </span><span style="font-size:20px; color:rgb(22, 126, 251);">∴CD+BE≥BF,</span></p><p class="ql-block"><span style="font-size:20px; color:rgb(237, 35, 8);">③</span><span style="font-size:20px;">∵∠BCF=∠BCA+</span><span style="font-size:20px; color:rgb(22, 126, 251);">∠ECF</span></p><p class="ql-block"><span style="font-size:20px;"> =∠BCA+</span><span style="font-size:20px; color:rgb(22, 126, 251);">∠DAC</span></p><p class="ql-block"><span style="font-size:20px;"> =180°-∠ABC</span></p><p class="ql-block"><span style="font-size:20px;"> =180°-60°=120°,</span></p><p class="ql-block"><span style="font-size:20px;"> 则作BG⊥FC的延长线于G,</span></p><p class="ql-block"><span style="font-size:20px;"> 得∠BCG=180°-120°=60°,</span></p><p class="ql-block"><span style="font-size:20px;">∴CG=½BC=4,GB=√3CG=4√3,</span></p><p class="ql-block"><span style="font-size:20px;">∴FG=CF+CG=10+4=14,</span></p><p class="ql-block"><span style="font-size:20px;">∴BF²=FG²+GB²=14²+(4√3)²</span></p><p class="ql-block"><span style="font-size:20px;"> =4(49+12)=4×61,</span></p><p class="ql-block"><span style="font-size:20px;">∴</span><span style="font-size:20px; color:rgb(22, 126, 251);">BF</span><span style="font-size:20px;">=2√61,</span></p><p class="ql-block"><span style="font-size:20px;">∴CD+BE的最小值是2√61.</span></p><p class="ql-block"><br></p><p class="ql-block"><span style="color:rgb(237, 35, 8); font-size:20px;">反思:通过作平行线智造等角的解法2.稍优.</span></p><p class="ql-block"><span style="color:rgb(237, 35, 8); font-size:20px;"></span></p> <p class="ql-block"><span style="color:rgb(237, 35, 8); font-size:20px;">3、</span><span style="font-size:20px;">如图,在△ABC中,∠ABC=45°,AB=6√2,AC=8,BC=6,点E,F分别在BC,AC边上,且AF=CE,求AE+BF的最小值.</span></p> <p class="ql-block"><span style="font-size:20px; color:rgb(237, 35, 8);">辩识图形情景</span><span style="font-size:20px;">:</span></p><p class="ql-block"><span style="font-size:20px;"> </span><span style="font-size:20px; color:rgb(22, 126, 251);">由两线和AE+BF中的AE、BF与动等线AF=CE联动,认识到是在</span><span style="font-size:20px;">“</span><span style="font-size:20px; color:rgb(57, 181, 74);">两线与动等线联动"的型态下,求两线和的最小值.</span></p><p class="ql-block"><span style="font-size:20px;"> 则激活三步解析思维求解.</span></p><p class="ql-block"><span style="color:rgb(237, 35, 8); font-size:20px;">第一步</span><span style="font-size:20px;">:</span><span style="font-size:20px; color:rgb(237, 35, 8);">确定模特三角形</span></p><p class="ql-block"><span style="font-size:20px;"> 为变线AE,取以AE为边的△CEA为模特三角形,并以CE定端点C处的</span><b style="font-size:20px; color:rgb(22, 126, 251);">∠ECA为模特角,CA为模特边.</b></p> <p class="ql-block"><span style="color:rgb(237, 35, 8); font-size:20px;">第二步:智造全等三角形变线.</span></p><p class="ql-block"><span style="font-size:20px;"> 从AF的定端点A出发,作AG∥CB,智造∠FAG=</span><b style="font-size:20px; color:rgb(22, 126, 251);">模特角∠ECA</b><span style="font-size:20px;">, </span></p><p class="ql-block"><b style="font-size:20px;"> </b><span style="font-size:20px;">取AG=</span><b style="font-size:20px; color:rgb(22, 126, 251);">模特边CA=8,</b><span style="font-size:20px;"> </span></p><p class="ql-block"><span style="font-size:20px;"> 又AF=CE,则连接EF, </span></p><p class="ql-block"><span style="font-size:20px;"> 得△AFG≌模特△CEA(SAS), </span></p><p class="ql-block"><span style="font-size:20px;"> ∴GF=AE, </span></p><p class="ql-block"><span style="font-size:20px;"> 则</span><span style="font-size:20px; color:rgb(22, 126, 251);">两动端点离散的两线和AE+BF,</span></p><p class="ql-block"><span style="font-size:20px; color:rgb(22, 126, 251);">转化为折线和GF+BF的目标达成</span><span style="font-size:20px;">.</span></p> <p class="ql-block"><span style="font-size:20px;"> 连接两定点BG,得</span><span style="font-size:20px; color:rgb(22, 126, 251);">GF</span><span style="font-size:20px;">+BF≥BG,</span></p><p class="ql-block"><span style="font-size:20px;"> ∴</span><span style="font-size:20px; color:rgb(22, 126, 251);">AE</span><span style="font-size:20px;">+BF≥BG,</span></p><p class="ql-block"><span style="font-size:20px; color:rgb(237, 35, 8);">第三步:求BG的长</span></p><p class="ql-block"><span style="font-size:20px;"> 作BH⊥GA的延长线于H,</span></p><p class="ql-block"><span style="font-size:20px;"> 得∠BAH=∠ABC=45°,</span></p><p class="ql-block"><span style="font-size:20px;"> 则由AB=6√2,得AH=BH=6,</span></p><p class="ql-block"><span style="font-size:20px;">∴HG=AH+AG=6+8=14,</span></p><p class="ql-block"><span style="font-size:20px;">∴BG²=HG²+AH²=14²+6²</span></p><p class="ql-block"><span style="font-size:20px;"> =4(49+9)=4×58,</span></p><p class="ql-block"><span style="font-size:20px;">∴CF=2√58,</span></p><p class="ql-block"><span style="font-size:20px;">∴AE+BF的最小值是2√58.</span></p><p class="ql-block"><span style="font-size:20px;"></span></p> <p class="ql-block"><span style="font-size:20px; color:rgb(237, 35, 8);">4、</span><span style="font-size:20px; color:rgb(1, 1, 1);">如图,</span><span style="font-size:20px;">在矩形ABCD中,AB=4, AD=6,点E是AB所在直线的一个动点,点F是对角线AC上的动点,且AE=CF,则BF+CE的最小值=▁▁▁.</span></p> <p class="ql-block"><span style="font-size:20px; color:rgb(237, 35, 8);">辩识图形情景</span><span style="font-size:20px;">:</span></p><p class="ql-block"><span style="font-size:20px;"> 敏锐地由题设的等线 AE=CF与BF+CE中的两线联动,认识到是在</span><span style="font-size:20px; color:rgb(22, 126, 251);">“两线与动等线联动"的型态下,求</span><span style="font-size:20px; color:rgb(255, 138, 0);">两线和的</span><span style="font-size:20px; color:rgb(57, 181, 74);">最小值</span><span style="font-size:20px; color:rgb(22, 126, 251);">.</span></p><p class="ql-block"><span style="font-size:20px;"> </span><span style="font-size:20px; color:rgb(237, 35, 8);">则激活三步解析思维求解</span><span style="font-size:20px;">.</span></p><p class="ql-block"><span style="color:rgb(237, 35, 8); font-size:20px;">第一步:</span><span style="font-size:20px;">确定模特三角形</span></p><p class="ql-block"><span style="font-size:20px; color:rgb(237, 35, 8);"> 为了变线CE,</span><span style="font-size:20px; color:rgb(1, 1, 1);">取以CE为边的△CEA为模特三角形,并以AE</span><span style="font-size:20px; color:rgb(176, 79, 187);">定端点A处的</span><b style="font-size:20px; color:rgb(22, 126, 251);">∠EAC为模特角,AC为模特边.</b></p> <p class="ql-block"><span style="font-size:20px;"> </span><span style="font-size:20px; color:rgb(237, 35, 8);">第二步:智造全等三角形变线</span></p><p class="ql-block"><span style="font-size:20px;"> </span><span style="font-size:20px; color:rgb(22, 126, 251);">从CF的</span><span style="font-size:20px; color:rgb(176, 79, 187);">定端点C出发</span><span style="font-size:20px; color:rgb(22, 126, 251);">,依次“智造”角和边,与AE定端点A处的模特</span><b style="font-size:20px; color:rgb(22, 126, 251);">∠EAC</b><span style="font-size:20px; color:rgb(22, 126, 251);">和</span><b style="font-size:20px; color:rgb(22, 126, 251);">AC</b><span style="font-size:20px; color:rgb(22, 126, 251);">相等.</span></p><p class="ql-block"><span style="font-size:20px;"> 由矩形ABCD知AB∥CD</span></p><p class="ql-block"><span style="font-size:20px;"> ∴</span><span style="font-size:20px; color:rgb(176, 79, 187);">点C处已存在</span><span style="font-size:20px;">∠FCD=</span><b style="font-size:20px; color:rgb(22, 126, 251);">模特∠EAC</b><span style="font-size:20px;">,</span></p><p class="ql-block"><span style="font-size:20px;"> 则延长CD至G,使CG=</span><b style="font-size:20px; color:rgb(22, 126, 251);">模特CA</b><span style="font-size:20px;">,</span></p><p class="ql-block"><span style="font-size:20px;"> 连接GF,∵CF=AE,</span></p><p class="ql-block"><span style="font-size:20px;">∴△GCF≌模特△CAE(SAS),</span></p><p class="ql-block"><span style="font-size:20px;">∴GF=CE,</span></p><p class="ql-block"><span style="font-size:20px;"> 则</span><span style="font-size:20px; color:rgb(237, 35, 8);">两动端点离散的两线和BF+CE,转化为折线和BF+GF.</span></p> <p class="ql-block"><span style="font-size:20px;"> 当三点B、F、G共线时,</span></p><p class="ql-block"><span style="font-size:20px;"> BF+GF的最小值=BG,</span></p><p class="ql-block"><span style="font-size:20px;">∴BF+CE的最小值=BG</span>.</p><p class="ql-block"><span style="font-size:20px; color:rgb(22, 126, 251);"> 第三步:求出BG的长得解.</span></p><p class="ql-block"><span style="font-size:20px; color:rgb(1, 1, 1);"> ∵矩形ABCD中,BC=AD=6,AB=4,</span></p><p class="ql-block"><span style="font-size:20px; color:rgb(1, 1, 1);">∴CA²=AB²+BC²=4²+6²=52,</span></p><p class="ql-block"><span style="font-size:20px; color:rgb(1, 1, 1);">∴CG²=CA²=52,</span></p><p class="ql-block"><span style="font-size:20px; color:rgb(1, 1, 1);">∴BG²= BC²+CG²=6²+52=88,</span></p><p class="ql-block"><span style="font-size:20px; color:rgb(1, 1, 1);">∴BG=2√22,</span></p><p class="ql-block"><span style="font-size:20px; color:rgb(1, 1, 1);">∴BF+CE的最小值为2√22.</span></p><p class="ql-block"><span style="font-size:20px; color:rgb(1, 1, 1);"></span></p> <p class="ql-block"><span style="color:rgb(237, 35, 8); font-size:20px;">5、</span><span style="font-size:20px;">如图,AD为等腰△ABC的高,AB=AC=5,BC=3,E、F分别为线段AD、AC上的动点,且AE=CF,则BF+CE的最小值为▁▁▁ .</span></p> <p class="ql-block"><span style="font-size:20px; color:rgb(237, 35, 8);">辩识图形情景</span><span style="font-size:20px;">:</span></p><p class="ql-block"><span style="font-size:20px;"> 认识到有两离散动端点F、E的两线BF、CE与动等线AE=CF联动.</span></p><p class="ql-block"><span style="font-size:20px;"> 则是“两线联动等线"型态的两线和最小值试题.</span></p><p class="ql-block"><span style="font-size:20px;"> 那么,激活三步解析思维求解.</span></p><p class="ql-block"><span style="font-size:20px; color:rgb(237, 35, 8);">第一步:确定模特三角形</span></p><p class="ql-block"><span style="font-size:20px;"> 若变线AE,则取AE为边的△AEC为模特三角形,并以CE定端点C处的∠EAC为模特角,CA为模特边.</span></p> <p class="ql-block"><span style="color:rgb(237, 35, 8); font-size:20px;">第二步:智造全等三角形变线.</span></p><p class="ql-block"><span style="font-size:20px;">从与AE对应相等的CF</span><span style="font-size:20px; color:rgb(176, 79, 187);">定端点C出发</span><span style="font-size:20px;">,</span></p><p class="ql-block"><span style="font-size:20px;">作CG∥AD,得∠FCG=模特角∠EAC,</span></p><p class="ql-block"><span style="font-size:20px;"> 作CG=模特边AC,</span></p><p class="ql-block"><span style="font-size:20px;"> 又CF=AE,则连GF,</span></p><p class="ql-block"><span style="font-size:20px;"> 得△CFG≌模特△AEC,</span></p><p class="ql-block"><span style="font-size:20px;"> ∴GF=CE,</span></p> <p class="ql-block"><span style="font-size:20px;"> 连接两定点BG, 得BF+GF≥BG,</span></p><p class="ql-block"><span style="font-size:20px;"> ∴BF+CF≥BG,</span></p><p class="ql-block"><span style="font-size:20px;"> </span><span style="font-size:20px; color:rgb(237, 35, 8);">第三步:求出BG的长得解.</span></p><p class="ql-block"><span style="font-size:20px;"> ∵AD⊥BC,CG∥AD,</span></p><p class="ql-block"><span style="font-size:20px;">∴∠BCG=∠ADB=90°,</span></p><p class="ql-block"><span style="font-size:20px;">∴BG²=BC²+CG²=3²+5²=34,</span></p><p class="ql-block"><span style="font-size:20px;">∴BG²=√34,</span></p><p class="ql-block"><span style="font-size:20px;">∴BF+CE的最小值为√34.</span></p><p class="ql-block"><span style="font-size:20px;"></span></p> <p class="ql-block"><span style="color:rgb(237, 35, 8); font-size:20px;">6、</span><span style="font-size:20px;">在等边△ABC中,AB=4,点E在边BC上,点F在∠ACB的角平分线CD上,CE=CF,则AE+AF的最小值为▁▁▁ .</span></p> <p class="ql-block"><span style="font-size:20px;"> 由题设的CE=CF与AE+AF中的两线联动,辩识到是在“</span><span style="font-size:20px; color:rgb(237, 35, 8);">两线与动等线联动</span><span style="font-size:20px;">"的型态下,求</span><span style="font-size:20px; color:rgb(237, 35, 8);">两线和的</span><span style="font-size:20px; color:rgb(57, 181, 74);">最小值</span><span style="font-size:20px;">.</span></p><p class="ql-block"><span style="font-size:20px;"> </span><span style="font-size:20px; color:rgb(237, 35, 8);">则激活三步解析思维求解.</span></p><p class="ql-block"><span style="color:rgb(237, 35, 8); font-size:20px;">第一步:确定模特三角形 </span><span style="font-size:20px;"> </span></p><p class="ql-block"><span style="font-size:20px;"> 若变线AF,则取以AF为边的△CFA为模特三角形,并以CF</span><span style="font-size:20px; color:rgb(176, 79, 187);">定端点C处的</span><b style="font-size:20px; color:rgb(22, 126, 251);">∠FCA为模特角,CA为模特边.</b></p> <p class="ql-block"><span style="font-size:20px;"> </span><span style="font-size:20px; color:rgb(237, 35, 8);">第二步:智造全等三角形变线</span></p><p class="ql-block"><span style="font-size:20px;"> 从与CF对应相等的CE</span><span style="font-size:20px; color:rgb(176, 79, 187);">定端点C出发</span><span style="font-size:20px;">,</span></p><p class="ql-block"><span style="font-size:20px;"> 作∠ECG=</span><b style="font-size:20px; color:rgb(22, 126, 251);">模特∠FCA</b><span style="font-size:20px;">=30°,</span></p><p class="ql-block"><span style="font-size:20px;"> 作CG=</span><b style="font-size:20px; color:rgb(22, 126, 251);">模特CA</b><span style="font-size:20px;">=4,</span></p><p class="ql-block"><span style="font-size:20px;"> 连接GE,∵CE=CF,</span></p><p class="ql-block"><span style="font-size:20px;">∴△CEG≌模特△CFA(SAS),</span></p><p class="ql-block"><span style="font-size:20px;"> ∴GE=AF,</span></p><p class="ql-block"><span style="font-size:20px;"> </span><span style="font-size:20px; color:rgb(237, 35, 8);">则两动端点离散的两线和AE+AF,转化为折线和AE+GE.</span></p> <p class="ql-block"><span style="font-size:20px;"> 连接两定点AG,</span></p><p class="ql-block"><span style="font-size:20px;"> 得AE+GE≥AG,</span></p><p class="ql-block"><span style="font-size:20px;"> ∴AE+AF≥AG,</span></p><p class="ql-block"><span style="color:rgb(237, 35, 8); font-size:20px;">第三步:求线段AG的长</span></p><p class="ql-block"><span style="font-size:20px;">∵∠ACG=∠ACB+∠ECG</span></p><p class="ql-block"><span style="font-size:20px;"> =60°+30°=90°,</span></p><p class="ql-block"><span style="font-size:20px;">∴等腰直角△BAG的斜边AG=4√2,</span></p><p class="ql-block"><span style="font-size:20px;">∴AE+AF的最小值为4√2.</span></p><p class="ql-block"><span style="font-size:20px;"></span></p><p class="ql-block"><span style="font-size:20px;"><span class="ql-cursor"></span></span></p> <p class="ql-block"><span style="font-size:20px; color:rgb(237, 35, 8);">7、</span><span style="font-size:20px;">如图,Rt△ABC中,∠ACB=90°, AB=10,点E、F是线段AB上的动点,且满足 AE=BF,连接CE和CF,求CE+CF的最小值.</span></p> <p class="ql-block"><span style="font-size:20px;"> 因为是在AE=BF的动等线条件下,求CE+CF的最小值,所以,属“两线与等线联动"型态下的两线和最小值.</span></p><p class="ql-block"><span style="font-size:20px;"> 则</span><span style="font-size:20px; color:rgb(237, 35, 8);">激活三步解析思维求解.</span></p><p class="ql-block"><span style="color:rgb(237, 35, 8); font-size:20px;">第一步:确定模特三角形</span></p><p class="ql-block"><span style="font-size:20px;"> 为变线CF,取△CFB为模特三角形,并以BF</span><span style="font-size:20px; color:rgb(176, 79, 187);">定端点B处的</span><b style="font-size:20px; color:rgb(22, 126, 251);">∠FBC为模特角,CB为模特边,</b></p> <p class="ql-block"><span style="font-size:20px; color:rgb(237, 35, 8);">第二步:智造全等三角形变线</span></p><p class="ql-block"><span style="font-size:20px;"> 过AE的</span><span style="font-size:20px; color:rgb(176, 79, 187);">定端点A</span><span style="font-size:20px;">作AD∥BC,</span></p><p class="ql-block"><span style="font-size:20px;">得∠DAE=</span><span style="font-size:20px; color:rgb(22, 126, 251);">模特</span><b style="font-size:20px; color:rgb(22, 126, 251);">∠CBF</b><span style="font-size:20px;">,</span></p><p class="ql-block"> <span style="font-size:20px;">取AD=</span><b style="font-size:20px; color:rgb(22, 126, 251);">模特边BC,</b><span style="font-size:20px;">又AE=BF,</span></p><p class="ql-block"><span style="font-size:20px;">∴△AED≌模特△BFC,∴DE=CF,</span></p><p class="ql-block"><span style="font-size:20px; color:rgb(176, 79, 187);">∴离散动端点的两线和CE+CF,转化为折线和CE+DE,</span></p> <p class="ql-block"> <span style="font-size:20px;">连接两定点CD,得CE+DE≥CD,</span></p><p class="ql-block"><span style="font-size:20px;"> ∴CE+CF≥CD,</span></p><p class="ql-block"><span style="font-size:20px;"> </span><span style="font-size:20px; color:rgb(237, 35, 8);">第三步:求线段CD的长.</span></p><p class="ql-block"><span style="font-size:20px;"> ∵AD∥BC,∴∠DAC=∠ACB=90°,</span></p><p class="ql-block"><span style="font-size:20px;"> 又AD=BC,AC=CA,</span></p><p class="ql-block"><span style="font-size:20px;">∴Rt△ADC≌Rt△CBA,</span></p><p class="ql-block"><span style="font-size:20px;">∴CD=AB=10,</span></p><p class="ql-block"><span style="font-size:20px;">所以,CE+CF的最小值=CD=10.</span></p><p class="ql-block"><span style="font-size:20px;"></span></p> <p class="ql-block"><span style="color:rgb(237, 35, 8); font-size:20px;">反思</span><span style="font-size:20px;">:因此类最小值试题有两个可供选择的模特三角形.所以,还有如下</span><span style="font-size:20px; color:rgb(22, 126, 251);">解法2.</span></p> <p class="ql-block"><span style="color:rgb(237, 35, 8); font-size:20px;">第一步:确定模特三角形</span></p><p class="ql-block"><span style="color:rgb(237, 35, 8); font-size:20px;"> 为变线CE</span><span style="font-size:20px;">、取△CEA为模特三角形,并以AE</span><span style="font-size:20px; color:rgb(176, 79, 187);">定端点A处的</span><b style="font-size:20px; color:rgb(22, 126, 251);">∠EAC为模特角,AC为模特边.</b></p><p class="ql-block"><span style="color:rgb(237, 35, 8); font-size:20px;">第二步:智造全等三角形变线.</span></p><p class="ql-block"><span style="font-size:20px;"> 从与AE对应相等的BF</span><span style="font-size:20px; color:rgb(176, 79, 187);">定端点B出发</span><span style="font-size:20px;">,</span></p> <p class="ql-block"><span style="font-size:20px;"> 作BG∥AC,得∠FBG=</span><b style="font-size:20px; color:rgb(22, 126, 251);">模特∠EAC</b></p><p class="ql-block"><span style="font-size:20px;"> 取BG=</span><b style="font-size:20px; color:rgb(22, 126, 251);">模特AC</b><span style="font-size:20px;">,又BF=AE,</span></p><p class="ql-block"><span style="font-size:20px;">∴△GFB≌模特△CEA,∴GF=CE,</span></p><p class="ql-block"><span style="font-size:20px;">∴离散动端点的两线和CE+CF,转化为折线和GF+CF,</span></p> <p class="ql-block"><span style="font-size:20px;"> 连接两定点CG,得GF+CF≥CG,</span></p><p class="ql-block"><span style="font-size:20px;"> ∴CE+CF≥CG,</span></p><p class="ql-block"><span style="font-size:20px;"> </span><span style="font-size:20px; color:rgb(237, 35, 8);">第三步:求线段CG的长</span><span style="font-size:20px; color:rgb(22, 126, 251);">.</span></p> <p class="ql-block"><span style="font-size:20px;">∵BG∥AC,∴∠CBG=∠ACB=90°,</span></p><p class="ql-block"><span style="font-size:20px;"> 又BG=AC,BC=CB,</span></p><p class="ql-block"><span style="font-size:20px;">∴Rt△BCG≌Rt△CBA,</span></p><p class="ql-block"><span style="font-size:20px;">∴CG=AB=10,</span></p><p class="ql-block"><span style="font-size:20px;">所以,CE+CF的最小值=CG=10.</span></p><p class="ql-block"><span style="font-size:20px;"></span></p><p class="ql-block"><span style="font-size:20px;"><span class="ql-cursor"></span></span></p> <p class="ql-block"><span style="font-size:20px; color:rgb(237, 35, 8);">8、</span><span style="font-size:20px;">如图,等边△ABC内部有一点D,DB=3,DC=4,∠BDC=150°,在AB、AC上分别有一动点E、F,且AE=AF,则DE+DF的最小值是▁▁▁.</span></p> <p class="ql-block"><span style="font-size:20px;"> 因为是在AE=AF的动等线条件下,求DE+DF的最小值,所以,这是在“两动态线与动等线联动"的型态下,求两线和DE+DF的</span><span style="font-size:20px; color:rgb(57, 181, 74);">最小值</span><span style="font-size:20px;">”.</span></p><p class="ql-block"> <span style="font-size:20px;">则需选定模特三角形后,画全等三角形变换一条动态线.</span></p> <p class="ql-block"><span style="font-size:20px; color:rgb(237, 35, 8);">第一步:确定模特三角形</span></p><p class="ql-block"><span style="font-size:20px; color:rgb(1, 1, 1);"> 为变线DE,连接AD,得模特△AED,</span></p><p class="ql-block"><span style="font-size:20px; color:rgb(237, 35, 8);">第二步:以旋转法智造全等三角形变线</span></p><p class="ql-block"><span style="font-size:20px; color:rgb(237, 35, 8);"> </span><span style="font-size:20px; color:rgb(1, 1, 1);">将模特△AED绕点A逆时针旋转60°得到△AFG,</span></p><p class="ql-block"><span style="font-size:20px; color:rgb(1, 1, 1);"> 智造出△AFG≌模特△AED,</span></p><p class="ql-block"><span style="font-size:20px; color:rgb(1, 1, 1);"> ∴GF=DE,</span></p><p class="ql-block"><span style="font-size:20px; color:rgb(1, 1, 1);">∴DE+DF=GF+DF,</span></p> <p class="ql-block"><span style="font-size:20px;"> 连接DG,得GF+DF≥DG,</span></p><p class="ql-block"><span style="font-size:20px;">∴DE+DF≥DG,</span></p><p class="ql-block"><span style="color:rgb(237, 35, 8); font-size:20px;">第三步:求DG的长</span></p> <p class="ql-block"><span style="font-size:20px;"> 注意到有计算源条件DB=3,CD=4,∠BDC=150°,</span></p><p class="ql-block"><span style="font-size:20px;"> 则由△DBC得∠DBC+∠DCB=30°,</span></p><p class="ql-block"><span style="font-size:20px;">由等边△ABC得∠ABC+∠ACB=120°,</span></p><p class="ql-block"><span style="font-size:20px;">∴</span><span style="font-size:20px; color:rgb(22, 126, 251);">∠DBE+∠FCD</span><span style="font-size:20px;">=(∠ABC+∠ACB)</span></p><p class="ql-block"><span style="font-size:20px;"> -(∠DBC+∠DCB)</span></p><p class="ql-block"><span style="font-size:20px;"> =120°-30°</span><span style="font-size:20px; color:rgb(22, 126, 251);">=90°</span><span style="font-size:20px;">,</span></p> <p class="ql-block"><span style="font-size:20px;"> 那么,连接GC,由△AFG≌△AED,得AG=AD,∠GAC=∠DAB,</span></p><p class="ql-block"><span style="font-size:20px;">又AC=AB,∴△ACG≌△ABD,</span></p><p class="ql-block"><span style="font-size:20px;">∴∠GCF=∠DBE,</span></p><p class="ql-block">∴∠GCD=<span style="font-size:20px; color:rgb(22, 126, 251);">∠GCF+∠FCD</span></p><p class="ql-block"><span style="font-size:20px; color:rgb(22, 126, 251);"> =∠DBE+∠FCD</span></p><p class="ql-block"><span style="font-size:20px; color:rgb(22, 126, 251);"> =90°,</span></p> <p class="ql-block"><span style="font-size:20px;">∵直角△GCD中,DF=4,DG=3,</span></p><p class="ql-block"><span style="font-size:20px;">∴斜边DG=5,</span></p><p class="ql-block"><span style="font-size:20px;">∴DE+DF的最小值为5.</span></p><p class="ql-block"><span style="font-size:20px;"></span></p> <p class="ql-block"><span style="color:rgb(237, 35, 8); font-size:20px;">反思</span><span style="font-size:20px;">:因为此类最小值试题有两个可供选择的模特三角形.所以,本题也可变线DF,取△AFD作为模特三角形,同理可解.</span></p><p class="ql-block"><br></p> <p class="ql-block"><span style="color:rgb(237, 35, 8); font-size:20px;">9、</span><span style="font-size:20px;">如图,在Rt△ACB中,BC=2,∠ACB=90°,∠A=30°,点D为AC的中点,点E为边AB上一动点,连接CE,将点E绕点A顺时针旋转60°得到点F,连接DF,求CE+DF的最小值.</span></p> <p class="ql-block"><span style="font-size:20px;"> 由条件“点E绕点A顺时针旋转60°得到点F”,得知AE=AF,</span></p><p class="ql-block"><span style="font-size:20px;"> 觉察到CE、DF的离散线性动端点E、F分别与AE、AF相连,</span></p><p class="ql-block"><span style="font-size:20px;">∴是在</span><span style="font-size:20px; color:rgb(22, 126, 251);">“两线与等线联动"的型态下,求两线和CE+DF的最小值. </span></p><p class="ql-block"><span style="font-size:20px;"> </span><span style="font-size:20px; color:rgb(237, 35, 8);">则激活三步解析思维求解.</span></p><p class="ql-block"><span style="font-size:20px; color:rgb(237, 35, 8);">第一步:确定模特三角形</span><span style="font-size:20px;"> </span></p><p class="ql-block"><span style="font-size:20px;"> 为变线CE,取△AEC为模特三角形.</span></p> <p class="ql-block"><span style="font-size:20px; color:rgb(237, 35, 8);">第二步:用旋转法智造全等三角形变线</span></p><p class="ql-block"><span style="font-size:20px; color:rgb(1, 1, 1);"> 将模特△AEC绕点A顺时针旋转60°得到△AFG,</span></p><p class="ql-block"><span style="font-size:20px; color:rgb(1, 1, 1);">那么△AFG≌模特△AEC,∴GF=CE,</span></p><p class="ql-block"><span style="font-size:20px; color:rgb(1, 1, 1);"> 则两离散动端点的两线和CE+DF,</span></p><p class="ql-block"><span style="font-size:20px; color:rgb(1, 1, 1);">转变为折线和GF+DF,</span></p> <p class="ql-block"><span style="font-size:20px;">∵GF、DF在直线AF的同侧,</span></p><p class="ql-block"><span style="font-size:20px;">则</span><span style="font-size:20px; color:rgb(22, 126, 251);">需施以“同侧变异侧”的变线</span><span style="font-size:20px;">.</span></p><p class="ql-block"><span style="font-size:20px;">∵∠DAF=30°+60°=90°,∴FA⊥DA,</span></p><p class="ql-block"><span style="font-size:20px;"> 在Rt△ACB中,∠CAB=30°,BC=2,∴AC=2√3,∵D是AC的中点,</span></p><p class="ql-block"><span style="font-size:20px;">∴AD=√3,</span></p><p class="ql-block"><span style="font-size:20px;"> 延长DA至D′,使AD′=AD=√3,</span></p><p class="ql-block"><span style="font-size:20px;"> 连接FD′,得D′F=DF,</span></p><p class="ql-block"><span style="font-size:20px;"> 连接两定点GD′,得GF+D′F≥GD′,</span></p><p class="ql-block"><span style="font-size:20px;"> ∴ CE+DF=GF+D′F≥GD′,</span></p><p class="ql-block"><span style="color:rgb(237, 35, 8); font-size:20px;">第三步:求线段GD′的长</span></p> <p class="ql-block"><span style="font-size:20px;">由智造的△AFG≌△AEC,得AG=AC,∠FAG=∠EAC=30°,</span></p><p class="ql-block"><span style="font-size:20px;">∴∠CAF=∠DAF-∠FAG</span></p><p class="ql-block"><span style="font-size:20px;"> =90°-30°=60°,</span></p><p class="ql-block"><span style="font-size:20px;"> 连CG,得等边△AGC,</span></p><p class="ql-block"><span style="font-size:20px;"> 连GD,得GD⊥AC于D,</span></p><p class="ql-block"><span style="font-size:20px;"> ∴GD=√3AD=3,</span></p> <p class="ql-block"><span style="font-size:20px;">∴直角△DGD′中,</span></p><p class="ql-block"><span style="font-size:20px;">GD′²=DD′²+GD²=(2√3)²+3²=21,</span></p><p class="ql-block"><span style="font-size:20px;">∴GD′=√21,</span></p><p class="ql-block"><span style="font-size:20px;">∴CE+DF的最小值=GD′=√21.</span></p><p class="ql-block"><span style="font-size:20px;"></span></p><p class="ql-block"><span style="font-size:20px;"><span class="ql-cursor"></span></span></p> <p class="ql-block"><span style="color:rgb(237, 35, 8); font-size:20px;">二、镶嵌在函数图象中的</span><span style="font-size:20px;">此类两线和的最小值</span></p> <p class="ql-block"><span style="color:rgb(237, 35, 8); font-size:20px;">10</span><span style="font-size:20px;">、(2022年甘肃)如图,在平面直角坐标系中,抛物线y=¼(x+3)(x-a)与x轴交于A,B(4,0)两点,点C在y轴上,且OC=OB,D,E分别是线段AC,AB上的动点(点D,E不与点A,B,C重合).</span></p><p class="ql-block"><span style="font-size:20px;">(1)求此抛物线的表达式;</span></p><p class="ql-block"><span style="font-size:20px;">(2)连接BD、CE,当CD=AE时,求BD+CE的最小值.</span></p> <p class="ql-block"><span style="font-size:20px;">(1).抛物线 y =¼( x +3)( x - a )与 x 轴交于 点B (4,0),</span></p><p class="ql-block"><span style="font-size:20px;">∴¼(4+3)(4- a )=0, 解得 a =4,</span></p><p class="ql-block"><span style="font-size:20px;">: y =¼( x +3)( x -4)=¼x²- ¼x -3,</span></p><p class="ql-block"><span style="font-size:20px;">即抛物线的表达式为 y =¼x²- ¼x -3;</span></p> <p class="ql-block"><span style="font-size:20px;">(2)∵是离散动端点的两线BD、CE与动等线CD=AE联动的形态,</span></p> <p class="ql-block"><span style="font-size:20px;"> 则激活三步解析思维求解.</span></p><p class="ql-block"><span style="color:rgb(237, 35, 8); font-size:20px;">第一步:确定模特三角形</span><span style="font-size:20px;"> </span></p><p class="ql-block"><span style="font-size:20px;"> 为变线CE,取以CE为边的△AEC为模特三角形,并以∠EAC为模特角,AC为模特边.</span></p> <p class="ql-block"><span style="font-size:20px;"> </span><span style="font-size:20px; color:rgb(237, 35, 8);">第2步:智造全等三角形变线</span></p><p class="ql-block"><span style="font-size:20px;"> 作GG∥AB,得∠DCG=模特∠EAC</span></p><p class="ql-block"><span style="font-size:20px;"> 取CG=模特AC,又CD=AE,</span></p><p class="ql-block"><span style="font-size:20px;"> 则连GD,得△CGD≌模特△AEC,∴DG=CE,</span></p><p class="ql-block"><span style="font-size:20px;"> 连接两定点BG,得BD+DG≥BG</span></p><p class="ql-block"><span style="font-size:20px;">∴BD+CE≥BG,</span></p> <p class="ql-block"><span style="font-size:20px;"> </span><span style="font-size:20px; color:rgb(237, 35, 8);">第三步:求出BG的长得解</span><span style="font-size:20px;">.</span></p><p class="ql-block"><span style="font-size:20px;"> 由y=¼x²-¼x-3得点A(-3,0),</span></p><p class="ql-block"><span style="font-size:20px;"> ∴OA=3,</span></p><p class="ql-block"><span style="font-size:20px;"> 又点B为(4,0),∴OC=OB=4,</span></p><p class="ql-block"><span style="font-size:20px;">∴AC=5=CG,</span></p> <p class="ql-block"><span style="font-size:20px;"> 作BH⊥GC的延长线于H,</span></p><p class="ql-block"><span style="font-size:20px;"> 由易知的正方形OBHC,</span></p><p class="ql-block"><span style="font-size:20px;"> 得CH=BH=OB=4,∴GH=5+4=9,</span></p><p class="ql-block"><span style="font-size:20px;"> ∴BG²=GH²+BH²=9²+4²=97,</span></p><p class="ql-block"><span style="font-size:20px;"> ∴BG=√97,</span></p><p class="ql-block"><span style="font-size:20px;"> ∴BD+CE的最小值是√97.</span></p><p class="ql-block"><br></p><p class="ql-block"><span style="color:rgb(237, 35, 8); font-size:20px;">反思</span><span style="font-size:20px;">:二次函数在解题中的作用,只是提供点坐标.</span></p> <p class="ql-block"><span style="font-size:20px; color:rgb(237, 35, 8);">11</span><span style="font-size:20px;">、(2023年天水)如图,抛物线y=-x²+bx与x轴交于点A,与直线y=-x交于点B(4,-4),点C(0,-4)在y轴上.点P从点B开始运动时,点Q从点O同时出发,以与点P相同的速度沿x轴正方向匀速运动,点P停止运动时点Q也停止运动.</span></p><p class="ql-block"><span style="font-size:20px;">(1)求抛物线y=-x²+bx的表达式;</span></p><p class="ql-block"><span style="font-size:20px;">(</span><span style="font-size:20px; color:rgb(237, 35, 8);">易得y=-x²+3x)</span><span style="font-size:20px;">.</span></p><p class="ql-block"><span style="font-size:20px;">(2)连接BQ,PC,求CP+BQ的最小值.</span></p> <p class="ql-block"><span style="font-size:20px;">∵点P、点Q同时出发,速度相同,</span></p><p class="ql-block"><span style="font-size:20px;">∴BP=OQ是动等线,又两线和 CP+BQ的动端点P、Q是离散形态.</span></p><p class="ql-block"><span style="font-size:20px;">∴是在“</span><span style="font-size:20px; color:rgb(22, 126, 251);">两线与动等线联动</span><span style="font-size:20px;">"的型态下,求两线和CP+BQ的</span><span style="font-size:20px; color:rgb(57, 181, 74);">最小值</span><span style="font-size:20px;">. </span></p><p class="ql-block"><span style="font-size:20px;"> 则激活三步解析思维求解.</span></p><p class="ql-block"><span style="font-size:20px; color:rgb(237, 35, 8);">第一步:确定模特三角形</span><span style="font-size:20px;"> </span></p><p class="ql-block"><span style="font-size:20px;"> 为变线CP,连BC,得以CP为边的模特△BPC</span></p><p class="ql-block"><span style="font-size:20px;"> 由点B(4,-4)、点C(0,-4),</span></p><p class="ql-block"><span style="font-size:20px;"> 得OC=</span><span style="font-size:20px; color:rgb(22, 126, 251);">模特边BC</span><span style="font-size:20px;">=4,</span></p><p class="ql-block"><span style="font-size:20px;"> </span><span style="font-size:20px; color:rgb(22, 126, 251);">模特角∠QBC</span><span style="font-size:20px;">=45°,∴OB=4√2,</span></p> <p class="ql-block"><span style="color:rgb(237, 35, 8); font-size:20px;">第二步:智造全等三角形变线</span></p><p class="ql-block"><span style="color:rgb(1, 1, 1); font-size:20px;"> 从与BP对应相等的OQ定端点O出发,</span></p><p class="ql-block"><span style="color:rgb(1, 1, 1); font-size:20px;"> 作∠QOD=模特∠PBC=45°,</span></p><p class="ql-block"><span style="color:rgb(1, 1, 1); font-size:20px;"> 取OD=模特BC=4,</span></p><p class="ql-block"><span style="font-size:20px;"> 又OQ=BP,则连DQ,</span></p><p class="ql-block"><span style="font-size:20px;"> 得△OQD≌模特△BPC,∴DQ=CP,</span></p><p class="ql-block"><span style="font-size:20px;">∴CP+BQ=DQ+BQ,</span></p><p class="ql-block"><span style="font-size:20px;">连接两定点DB,得DQ+BQ≥GB,</span></p><p class="ql-block"><span style="font-size:20px;">∴CP+BQ≥GB,</span></p> <p class="ql-block"><span style="color:rgb(237, 35, 8); font-size:20px;">第三步:求DB的长</span></p><p class="ql-block"><span style="color:rgb(1, 1, 1); font-size:20px;"> ∵∠DOB=45°+45°=90°,</span></p><p class="ql-block"><span style="color:rgb(1, 1, 1); font-size:20px;">∴Rt△ODB中,DB²=OD²+OB²</span></p><p class="ql-block"><span style="color:rgb(1, 1, 1); font-size:20px;"> =4²+(4√2)²=48,</span></p><p class="ql-block"><span style="color:rgb(1, 1, 1); font-size:20px;">∴DB=4√3,</span></p><p class="ql-block"><span style="color:rgb(1, 1, 1); font-size:20px;">∴CP+BQ的最小值是4√3.</span></p><p class="ql-block"><span style="color:rgb(1, 1, 1); font-size:20px;"></span></p> <p class="ql-block"><span style="font-size:20px; color:rgb(237, 35, 8);">12</span><span style="font-size:20px;">、(2023年孝感)已知抛物线y=−½x²+bx+c与x轴交于A,B(4,0)两点,与y轴交于点C(0,2).点P为第一象限抛物线上的点,连接CA,CB,PB,PC.</span></p><p class="ql-block"><span style="font-size:20px;">(1)直接写出结果;b=▁▁ ,c= ▁▁,点A的坐标为▁▁▁ ,tan∠ABC=▁▁ ;</span></p><p class="ql-block"><span style="font-size:20px;">(2)略;</span></p><p class="ql-block"><span style="font-size:20px;">(3)如图,点D在y轴负半轴上,OD=OB,点Q为抛物线上一点,∠QBD=90°.点E,F分别为△BDQ的边DQ,DB上的动点,且QE=DF,求BE+QF的最小值.</span></p> <p class="ql-block"><span style="font-size:20px;">(1)由点 B (4,0), C (0,2),</span></p><p class="ql-block"><span style="font-size:20px;">易得抛物线解析式为:</span></p><p class="ql-block"><span style="font-size:20px;"> y =-½x +3/2 x +2,</span></p><p class="ql-block"><span style="font-size:20px;">∴抛物线 与 x 轴交于 A (-1,0),</span></p><p class="ql-block"><span style="font-size:20px;">∵OB=4, OC =2,</span></p><p class="ql-block"><span style="font-size:20px;">Rt△COB中,tan∠ ABC =OB/OC=½</span></p> <p class="ql-block"><span style="font-size:20px;">(2)</span><span style="font-size:20px; color:rgb(22, 126, 251);">认识到两线和BE+QF的离散动端点E、F与动等线QE=DF相连,</span></p><p class="ql-block"><span style="font-size:20px;">∴是在</span><span style="font-size:20px; color:rgb(237, 35, 8);">“两线与动等线联动"的型态下,</span><span style="font-size:20px;">求两线和BE+QF </span><span style="font-size:20px; color:rgb(1, 1, 1);">的</span><span style="font-size:20px; color:rgb(57, 181, 74);">最小值</span><span style="font-size:20px;">. </span></p><p class="ql-block"><span style="font-size:20px;"> 则激活三步解析思维求解.</span></p><p class="ql-block"><span style="color:rgb(237, 35, 8); font-size:20px;">第一步:确定模特三角形</span><span style="font-size:20px;"> </span></p><p class="ql-block"><span style="font-size:20px;"> 为变线BE,取△QEB为模特三角形,并以点Q处的</span><b style="font-size:20px; color:rgb(22, 126, 251);">∠EQB为模特角,QB为模特边,</b></p> <p class="ql-block"><span style="color:rgb(237, 35, 8); font-size:20px;">第2步:智造全等三角形变线</span></p><p class="ql-block"><span style="font-size:20px;"> 从点D出发,作∠FDG=</span><b style="font-size:20px; color:rgb(22, 126, 251);">模特∠EQB</b><span style="font-size:20px;">,</span></p><p class="ql-block"><span style="font-size:20px;"> 取DG=</span><b style="font-size:20px; color:rgb(22, 126, 251);">模特QB,</b><span style="font-size:20px;">又DF=QE,</span></p><p class="ql-block"><span style="font-size:20px;"> 则连FG,得△FDG≌模特△EQB,</span></p><p class="ql-block"><span style="font-size:20px;">∴GF=BE,</span></p><p class="ql-block"><span style="font-size:20px;"> ∴BE+QF=GF+QF,</span></p><p class="ql-block"><span style="font-size:20px;"> ∵当三点G、F、Q共线时,</span></p><p class="ql-block"><span style="font-size:20px;"> GF+QF的最小值=GQ,</span></p><p class="ql-block"><span style="font-size:20px;"> ∴BE+QF的最小值=GQ,</span></p> <p class="ql-block"><span style="font-size:20px; color:rgb(237, 35, 8);">第三步:展开计算思维,求QG的长.</span></p><p class="ql-block"><span style="font-size:20px;"> 要求QG的长,</span><span style="font-size:20px; color:rgb(22, 126, 251);">需先求出抛物线y=-½x +3/2 x +2上点Q的坐标,然后利用点Q的坐标去求出相关线段的长.</span></p><p class="ql-block"><span style="font-size:20px;"> ∵OB=OD=4,∴∠OBD=45°,</span></p><p class="ql-block"><span style="font-size:20px;">∵∠QBD=90°,∴∠QBO=45°,</span></p><p class="ql-block"><span style="font-size:20px;"> 作QN⊥OB于N,得NB=NQ,</span></p><p class="ql-block"> <span style="font-size:20px;">设点Q为(a,-½a²+3/2 a+2),</span></p><p class="ql-block"><span style="font-size:20px;"> 得NB=OB-ON=4-a,</span></p><p class="ql-block"><span style="font-size:20px;"> NQ=-½a²+3/2 a+2),</span></p><p class="ql-block"><span style="font-size:20px;">∴-½a²+3/2 a+2=4-a,</span></p><p class="ql-block"><span style="font-size:20px;">解得a₁=1,a₂=4,∴点Q为(1,3),∴NB=NQ=3,QB=√2NQ=3√2=DG,</span></p><p class="ql-block"><span style="font-size:20px;">作QM⊥y轴于M,</span></p><p class="ql-block"><span style="font-size:20px;">得OM=NQ=3,OM=a=1,</span></p><p class="ql-block"><span style="font-size:20px;">∴MD=3+4=7,∴DQ²=7²+1²=50,</span></p> <p class="ql-block"><span style="font-size:20px;">∵∠QDG=∠QDB+∠FDG</span></p><p class="ql-block"><span style="font-size:20px;"> =∠QDB+∠EQB</span></p><p class="ql-block"><span style="font-size:20px;"> =180°-∠QBD</span></p><p class="ql-block"><span style="font-size:20px;"> =180°-90°=90°,</span></p><p class="ql-block"><span style="font-size:20px;">∴△DQG是直角三角形,</span></p><p class="ql-block"><span style="font-size:20px;">∴QG²=DQ²+DG²=50+(3√2)²=68,</span></p><p class="ql-block"><span style="font-size:20px;">∴QG=2√17,</span></p><p class="ql-block"><span style="font-size:20px;">∴BE+QF的最小值是2√17.</span></p><p class="ql-block"><span style="font-size:20px;"></span></p><p class="ql-block"><span style="font-size:20px;"></span></p> <p class="ql-block" style="text-align:center;"><span style="font-size:20px;">下列试题的解析,见后文.</span></p> <p class="ql-block" style="text-align:center;"><span style="color:rgb(237, 35, 8); font-size:22px;">三、两线和最小值“套装”的问题</span></p> <p class="ql-block"><span style="color:rgb(237, 35, 8); font-size:20px;">13</span><span style="font-size:20px;">、如图, AD 是等边三角形 ABC 的高, AB =√3+1, E , F 分别为线段 AD , AC 上动点,且 AE = CF ,</span></p><p class="ql-block"><span style="font-size:20px;">(1) BF + CE 最小值为</span></p><p class="ql-block"><span style="font-size:20px;">(2)当 BF + CE 最小时, AE =▁▁;∠AFB =▁▁▁.</span></p><p class="ql-block"> </p> <p class="ql-block"><span style="color:rgb(237, 35, 8); font-size:20px;">14、</span><span style="font-size:20px;">如图,△ABC中,∠A=90°,AB=AC,BC=2,D、E分别是三角形边AB、AC上的动点,且AD=CE,连接BE,CD.</span></p><p class="ql-block"><span style="font-size:20px;">(1)求BE+CD的最小值;</span></p><p class="ql-block"><span style="font-size:20px;">(2)当BE+CD的值最小时,</span></p><p class="ql-block"><span style="font-size:20px;">① AE=▁▁▁;</span></p><p class="ql-block"><span style="font-size:20px;">②△CBE的面积=▁▁▁;</span></p><p class="ql-block"><span style="font-size:20px;">③tan∠CBE=▁▁▁.</span></p> <p class="ql-block"><span style="font-size:20px; color:rgb(237, 35, 8);">15、</span><span style="font-size:20px;">(2022年遵义填选压轴题)如图,在等腰直角三角形ABC中,∠BAC=90°,点M,N分别为BC,AC上的动点,且AN=CM,AB=√2.当AM+BN的值最小时,CM的长为 ▁▁▁.</span></p> <p class="ql-block"><span style="color:rgb(237, 35, 8); font-size:20px;">16</span><span style="font-size:20px;">、如图,在等腰直角三角形ABC中,∠BAC=90°,AB=AC=3,点D,E分别为边BC,AC上的动点,且AE=CD,当AD+BE的值最小时,求CE的长.</span></p> <p class="ql-block"><span style="font-size:20px; color:rgb(237, 35, 8);">17、</span><span style="font-size:20px;">如图,在平面直角坐标系中,等腰Rt△ABC三个顶点在坐标轴上,∠BAC=90°,点D,E分别为BC,AC上的两个动点,且AE=CD,AC=2√2.当AD+BE的值最小时,则点D的坐标为_________ .</span></p> <p class="ql-block"><span style="color:rgb(237, 35, 8); font-size:22px;">18、</span><span style="font-size:22px;">如图,抛物线y=﹣x²+x+2与x轴交于A , B ,与y轴交于点C,P为抛物线上一点,OP与线段BC交于点E,点F在x轴正半轴上, CE=BF,则OE+CQ的最小值=▁▁▁,此时点F的坐标为▁▁▁.</span></p> <p class="ql-block"><span style="color:rgb(237, 35, 8); font-size:20px;">19</span><span style="font-size:20px;">、如图(1),在△ABC中,AB=AC,∠BAC=90°,边BC上的点D从顶点C出发,向顶点B运动,同时,边AC上的点E从顶点A出发,向顶点C运动,D,E两点运动速度的大小相等,设x=AE,y=AE+CD,y关于x的函数图象如图(2),图象过点(0,6),则图象最低点的坐标是▁▁▁▁ .</span></p> <p class="ql-block"><span style="font-size:20px; color:rgb(237, 35, 8);">20</span><span style="font-size:20px;">、(2021年武汉)如图(1),在△ABC中,AB=AC,∠BAC=90°,边AB上的点D从顶点A出发,向顶点B运动,同时,边BC上的点E从顶点B出发,向顶点C运动,D,E两点运动速度的大小相等,设x=AD,y=AE+CD,y关于x的函数图象如图(2),图象过点(0,2),则图象最低点的横坐标是▁▁. .</span></p> <p class="ql-block"><span style="color:rgb(237, 35, 8); font-size:20px;">21</span><span style="font-size:20px;">、如图1,在 Rt△ABC中,∠ACB=90°, ∠BAC=60°, AD平分∠BAC交BC于点D,点E为AC的中点,点F是AD上的一个动点,将AF沿AB翻折,得到AG .设 AF=x , CF+EG=y, y关于x的函数图象如图2所示,则函数图象最低点的纵坐标为▁▁▁.</span></p> <p class="ql-block"><span style="font-size:20px; color:rgb(237, 35, 8);">22、</span><span style="font-size:20px;">在△ABC中,∠ABC=45°,∠CAB=30°,BC=6,E是线段AB上一动点,连接CE.将△CEB沿CE翻折至△CEB′,连接AB′.D是线段AC上的点,且AD=BE,当CE+BD取得最小值时,求AB′的长.</span></p> <p class="ql-block"><span style="font-size:20px; color:rgb(237, 35, 8);">23</span><span style="font-size:20px;">、如图,在△ABC中,AB=AC,∠BAC=84°,点M为AC上一动点,在BC上取点N,使CN=AM,连接AN,BM,当AN+BM的值最小时,求∠ANC的度数 .</span></p> <p class="ql-block"><span style="font-size:20px; color:rgb(237, 35, 8);">24、</span><span style="font-size:20px;">如图,在等边△ABC中,D为BC上一点,DE∥AB,且DE=BD.点N为AB边上一点,连接BE,AN=BE.若CN+CE的值最小时,∠NCE的度数为▁▁▁ °</span></p>