工作就用美篇工作版","guide_search_desc":"海量模板范文,一键做同款 工作就用美篇工作版","img_beautify_switch":0,"ad_free":0,"text_direction":1,"template":{},"container":{"id":5558397,"user_id":57825749,"container_id":9,"stick_article_id":"","cover_img_url":"https://ss2.meipian.me/users/57825749/f0d7f23744e441c8a72d6e9594030acc.jpg","display_name":"对角互补+邻边相等四边形模型","description":"","sort":-7,"review_state":0,"ip":"27.218.38.97","state":0,"create_time":1725103359},"redirect":{"redirect_type":1,"img_url":false,"link_url":"/wap/downloadpage/backpage","button_bg_color":false,"button_desc":false,"redirect_desc":false},"edit_date_str":"更新于 05-12","current_time":1748785696,"font_name":"","rcmd_meipian":0,"hide_article_link":0,"from_wechat":false,"topk_keywords":[{"name":"四边形","score":0.717464},{"name":"相等","score":0.219006},{"name":"定义","score":0.198326},{"name":"平分线","score":0.156822},{"name":"邻边","score":0.139355},{"name":"知识","score":0.113138},{"name":"直角三角形","score":0.110379},{"name":"对角线","score":0.104929},{"name":"锐角三角","score":0.104516},{"name":"学生","score":0.10111}],"music_name":"","origin_status":0,"password_v2":"","font_id":0,"title_style":"","rich_text_title":"","enable_download":2,"cover_thumb":"https://static2.ivwen.com/users/57825749/17cc4ba74c02400ca20e16c838c07c76.jpg-thumb2","has_video":false,"gift_switch":1,"enable_watermark":1,"content":{"article_id":402166406,"content":[{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"709038731e0828fb745655a91eb6335a"},"img_del":0,"img_signed":[],"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text":"
山东与河南临省,都是考试大省。2024年河南中考,压轴题,23题,也考了“直角三角形斜边上的中线等于斜边的一半”。此题是一道“新定义”题型,即给出一个学生没有学过的定义,让学生通过阅读去理解这个定义,并且根据这个新定义结合初中所学的知识去解决问题。重在考查学生对新知识的理解掌握并应用的能力。
","text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"e8a9a43aa4d8916a5bb8e9cdcaceffe8"},"img_del":0,"img_signed":[],"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text":"我们先来看看题。
","text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"4698811e315b306403c043c8620f094c"},"img_del":0,"img_height":535,"img_signed":[],"img_url":"https://ss2.meipian.me/users/57825749/938ac83252434c7787206a782d58617e.jpg","img_width":952,"is_origin":false,"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0,"watermark":"?meipian-watermark/bucket/ivwen/key/dXNlcnMvNTc4MjU3NDkvOTM4YWM4MzI1MjQzNGM3Nzg3MjA2YTc4MmQ1ODYxN2UuanBn/nickname/54-N6KeB5YS_/userid/NTc4MjU3NDk=/sign/7327c8c162788377d5075709576c4193"},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"1e7be02aa396d7037366509e932e45b7"},"img_del":0,"img_signed":[],"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text":"23. (10分)综合与实践
在学习特殊四边形的过程中,我们积累了一定的研究经验。请运用已有经验,对“邻等对补四边形”进行研究。
定义:至少有一组邻边相等且对角互补的四边形叫做邻等对补四边形。
(1)操作判断:用分别含有30°和45°角的直角三角形纸板拼出如图1所示的4个四边形,其中是邻等对补四边形的有____ (填序号)。
(2)性质探究根据定义可得出邻等对补四边形的边、角的性质。下面研究与对角线相关的性质。如图2,四边形ABCD是邻等对补四边形,AB = AD ,AC是它的一条对角线。
①写出图中相等的角,并说明理由;
②若BC =m,DC =n,∠BCD = 2a,求AC的长(用含m,n,a的式子表示)。
(3)拓展应用如图3,在Rt△ABC中,∠B=90° ,AB=3,BC =4,分别在边BC ,AC上取点M,N使四边形ABMN是邻等对补四边形。当该邻等对补四边形仅有一组邻边相等时,请直接写出BN的长。
","text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"2cf2fcfa28c88db1741ad9593cfac35e"},"img_del":0,"img_height":1404,"img_signed":[],"img_size":75,"img_url":"https://ss2.meipian.me/users/57825749/e8df816b7943789db91bc3dd6b1c7455.jpg","img_width":982,"is_origin":false,"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0,"watermark":"?meipian-watermark/bucket/ivwen/key/dXNlcnMvNTc4MjU3NDkvZThkZjgxNmI3OTQzNzg5ZGI5MWJjM2RkNmIxYzc0NTUuanBn/nickname/54-N6KeB5YS_/userid/NTc4MjU3NDk=/sign/7327c8c162788377d5075709576c4193"},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"df6e265998e2a6e02f491319ee009e39"},"img_del":0,"img_signed":[],"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text":"这是新定义为背景的综合题。主要考查角平分线的性质、旋转、三角形全等(相似)、解直角三角形、勾股定理,锐角三角函数等知识。此题综合性强,难度大。
","text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"a5f8a94e9a0fbb2c4af91be26f267ea7"},"img_del":0,"img_height":842,"img_signed":[],"img_size":46,"img_url":"https://ss2.meipian.me/users/57825749/c5eaa2682fa9bdd2e07b931c25dceed0.jpg","img_width":1080,"is_origin":false,"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0,"watermark":"?meipian-watermark/bucket/ivwen/key/dXNlcnMvNTc4MjU3NDkvYzVlYWEyNjgyZmE5YmRkMmUwN2I5MzFjMjVkY2VlZDAuanBn/nickname/54-N6KeB5YS_/userid/NTc4MjU3NDk=/sign/7327c8c162788377d5075709576c4193"},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"2cc9cf9b57dfcc652c3650318b63295b"},"img_del":0,"img_signed":[],"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text":"第一问
","text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"8a91be16a2167d76ca372220b828539f"},"img_del":0,"img_signed":[],"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text":"23. (10分)综合与实践
在学习特殊四边形的过程中,我们积累了一定的研究经验。请运用已有经验,对“邻等对补四边形”进行研究。
定义:至少有一组邻边相等且对角互补的四边形叫做邻等对补四边形。
(1)操作判断
用分别含有30°和45°角的直角三角形纸板拼出如图1所示的4个四边形,其中是邻等对补四边形的有____(填序号)。
","text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"2737272d430a49600b10b49534189b61"},"img_del":0,"img_height":229,"img_signed":[],"img_size":12,"img_url":"https://ss2.meipian.me/users/57825749/e944deafbb36e597f8983b59e4b15ef8.jpg","img_width":875,"is_origin":false,"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0,"watermark":"?meipian-watermark/bucket/ivwen/key/dXNlcnMvNTc4MjU3NDkvZTk0NGRlYWZiYjM2ZTU5N2Y4OTgzYjU5ZTRiMTVlZjguanBn/nickname/54-N6KeB5YS_/userid/NTc4MjU3NDk=/sign/7327c8c162788377d5075709576c4193"},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"335e07763ba22c8c459bc3fe3a0a45d4"},"img_del":0,"img_signed":[],"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text":"第一问是对定义的直接考查,只要学生能够读明白概念,对照着概念里的要求去看四边形应该很容易找到正确答案:②④。很好的考察了学生的审题能力。
","text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"7468e52bf50e318627d2fc2f69ec0ccc"},"img_del":0,"img_height":1202,"img_signed":[],"img_size":43,"img_url":"https://ss2.meipian.me/users/57825749/af7c5179be1a6a62ef335faaa2545d96.jpg","img_width":649,"is_origin":false,"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0,"watermark":"?meipian-watermark/bucket/ivwen/key/dXNlcnMvNTc4MjU3NDkvYWY3YzUxNzliZTFhNmE2MmVmMzM1ZmFhYTI1NDVkOTYuanBn/nickname/54-N6KeB5YS_/userid/NTc4MjU3NDk=/sign/7327c8c162788377d5075709576c4193"},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"87bc801a99bbf8bf069f8b18905ec9d6"},"img_del":0,"img_signed":[],"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text":"第二问
","text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"bd4e415bd20a89d10d3179ab2256f1c9"},"img_del":0,"img_height":225,"img_signed":[],"img_size":5,"img_url":"https://ss2.meipian.me/users/57825749/a07fdab909a5fff554364138b112cfa5.jpg","img_width":370,"is_origin":false,"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0,"watermark":"?meipian-watermark/bucket/ivwen/key/dXNlcnMvNTc4MjU3NDkvYTA3ZmRhYjkwOWE1ZmZmNTU0MzY0MTM4YjExMmNmYTUuanBn/nickname/54-N6KeB5YS_/userid/NTc4MjU3NDk=/sign/7327c8c162788377d5075709576c4193"},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"2c6f07f7be5e5f337a8411627aece40e"},"img_del":0,"img_signed":[],"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text":"(2)性质探究根据定义可得出邻等对补四边形的边、角的性质。下面研究与对角线相关的性质。如图2,四边形ABCD是邻等对补四边形,AB = AD ,AC是它的一条对角线。
①写出图中相等的角,并说明理由;
②若BC =m,DC =n,∠BCD = 2a,求AC的长(用含m,n,a的式子表示)。
","text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"4037c6cbba3f0829cb2f93ba5ae89875"},"img_del":0,"img_height":1222,"img_signed":[],"img_size":56,"img_url":"https://ss2.meipian.me/users/57825749/936705c461ee70852665ebf48cf5fabf.jpg","img_width":897,"is_origin":false,"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0,"watermark":"?meipian-watermark/bucket/ivwen/key/dXNlcnMvNTc4MjU3NDkvOTM2NzA1YzQ2MWVlNzA4NTI2NjVlYmY0OGNmNWZhYmYuanBn/nickname/54-N6KeB5YS_/userid/NTc4MjU3NDk=/sign/7327c8c162788377d5075709576c4193"},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"7b1808fe943caec313c6935c25877c00"},"img_del":0,"img_signed":[],"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text":"第(2)①题,学生通过观察可以猜测出两个角相等,但是要证明就需要利用三角形全等、角平分线的判定或者旋转加三角形全等的知识来解决,相对来讲还不是太难。
","text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"0712ec0482f462c2949ee91f75ae19d1"},"img_del":0,"img_signed":[],"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text":"第(2)①,方法很多,下面一一道来。
方法1:通过构造全等三角形证角相等
","text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"0165fecd4a71afcb983ae92ac9610197"},"img_del":0,"img_signed":[],"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text":"可以截长或补短证全等
","text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"28de7ba4167f9801c4657354b511c046"},"img_del":0,"img_signed":[],"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text":"延长CB至点E,使BE=DC,连接AE。
","text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"8fd1138eef55e7a55d1139779aa08320"},"img_del":0,"img_height":384,"img_signed":[],"img_size":11,"img_url":"https://ss2.meipian.me/users/57825749/515f526aff730eb6331bf68694fa31a9.jpg","img_width":996,"is_origin":false,"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0,"watermark":"?meipian-watermark/bucket/ivwen/key/dXNlcnMvNTc4MjU3NDkvNTE1ZjUyNmFmZjczMGViNjMzMWJmNjg2OTRmYTMxYTkuanBn/nickname/54-N6KeB5YS_/userid/NTc4MjU3NDk=/sign/7327c8c162788377d5075709576c4193"},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"9d9456e293cd6ba94e94115b87d1e96e"},"img_del":0,"img_signed":[],"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text":"方法2:也可以直接旋转某边到某△,证三点共线。
","text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"66c6955525f308d3e2ee0e7eb73eefee"},"img_del":0,"img_height":1306,"img_signed":[],"img_size":56,"img_url":"https://ss2.meipian.me/users/57825749/927efebe84be9ae6771805cc92bf1280.jpg","img_width":902,"is_origin":false,"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0,"watermark":"?meipian-watermark/bucket/ivwen/key/dXNlcnMvNTc4MjU3NDkvOTI3ZWZlYmU4NGJlOWFlNjc3MTgwNWNjOTJiZjEyODAuanBn/nickname/54-N6KeB5YS_/userid/NTc4MjU3NDk=/sign/7327c8c162788377d5075709576c4193"},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"5a2802295f7cce78c444017037fc1609"},"img_del":0,"img_signed":[],"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text":"方法3:双垂直法(向两边作垂线)
","text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"0787feba242c57a80dcc06b198f0f172"},"img_del":0,"img_signed":[],"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text":"通过证角平分线得角相等
过点A分别作BC,DC的垂线,(双垂线法)证明△ABF≌△ADE (AAS) ,从而得到AE=AF,利用“到角两边距离相等的点在角平分线上”得出AC是∠BCD的角平分线。
","text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"4591b9835f7bde59e37723b43e9e07bd"},"img_del":0,"img_height":546,"img_signed":[],"img_size":14,"img_url":"https://ss2.meipian.me/users/57825749/dbfe2ab34c6f535c5466bf8bd1440a8d.jpg","img_width":711,"is_origin":false,"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0,"watermark":"?meipian-watermark/bucket/ivwen/key/dXNlcnMvNTc4MjU3NDkvZGJmZTJhYjM0YzZmNTM1YzU0NjZiZjhiZDE0NDBhOGQuanBn/nickname/54-N6KeB5YS_/userid/NTc4MjU3NDk=/sign/7327c8c162788377d5075709576c4193"},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"fc14aebff80b17457ca2edd5e4857fa9"},"img_del":0,"img_signed":[],"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text":"方法4:做辅助圆
","text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"e70a74bd00f5ff5eeb2d1123f7b452f6"},"img_del":0,"img_signed":[],"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text":"方法3: A、B、C、D四点共圆,由弦相等得出所对的圆周角相等。
","text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"97433823d0770dd0f08e79941672b371"},"img_del":0,"img_height":854,"img_signed":[],"img_size":45,"img_url":"https://ss2.meipian.me/users/57825749/c5452fe7c40c62ce432323d596b54c29.jpg","img_width":909,"is_origin":false,"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0,"watermark":"?meipian-watermark/bucket/ivwen/key/dXNlcnMvNTc4MjU3NDkvYzU0NTJmZTdjNDBjNjJjZTQzMjMyM2Q1OTZiNTRjMjkuanBn/nickname/54-N6KeB5YS_/userid/NTc4MjU3NDk=/sign/7327c8c162788377d5075709576c4193"},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"5c2577a4c5b2ba67009520242a71d306"},"img_del":0,"img_signed":[],"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text":"第(2)②题要运用到锐角三角函数的知识,就有一定的难度。
","text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"26152f2f23ed59bc137cbc8846ad2181"},"img_del":0,"img_signed":[],"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text":"②过点A作AF⊥EC,垂足为点F。
","text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"25f18304372d6379eb8aa7a21fc9a740"},"img_del":0,"img_height":377,"img_signed":[],"img_url":"https://ss2.meipian.me/users/57825749/60b1394b8a1b48efaa16ba3abb1823f8.jpg","img_width":952,"is_origin":false,"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0,"watermark":"?meipian-watermark/bucket/ivwen/key/dXNlcnMvNTc4MjU3NDkvNjBiMTM5NGI4YTFiNDhlZmFhMTZiYTNhYmIxODIzZjguanBn/nickname/54-N6KeB5YS_/userid/NTc4MjU3NDk=/sign/7327c8c162788377d5075709576c4193"},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"ef482870861375b60827b35396af5366"},"img_del":0,"img_signed":[],"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text":"自己完成吧。
","text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"52f3cd17dff34b571a53df299e5a99cb"},"img_del":0,"img_height":1328,"img_signed":[],"img_size":64,"img_url":"https://ss2.meipian.me/users/57825749/e690f8676589f1737302ce0f8e3bcc57.jpg","img_width":890,"is_origin":false,"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0,"watermark":"?meipian-watermark/bucket/ivwen/key/dXNlcnMvNTc4MjU3NDkvZTY5MGY4Njc2NTg5ZjE3MzczMDJjZTBmOGUzYmNjNTcuanBn/nickname/54-N6KeB5YS_/userid/NTc4MjU3NDk=/sign/7327c8c162788377d5075709576c4193"},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"7f476790b448732f3b94ef190308ee0d"},"img_del":0,"img_signed":[],"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text":"第三问
","text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"61e08b36f90eb52f9a8181a7fbf79e2d"},"img_del":0,"img_signed":[],"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text":"第(3)问要从四种不同的情况,紧扣定义来逐一分析,在求值上要用到的解锐角三角函数的知识和勾股定理知识以及它们的综合运用,对学生的数学素养的要求较高。难度相对较大。
","text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"df31c79442a9e8fa01f9cbd27b492edc"},"img_del":0,"img_signed":[],"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text":"(3)拓展应用
如图3,在Rt△ABC中,∠B=90° ,AB=3,BC =4,分别在边BC ,AC上取点M,N使四边形ABMN是邻等对补四边形。当该邻等对补四边形仅有一组邻边相等时,请直接写出BN的长。
","text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"8a37e6f048554f2ba8e645349e9f6fe3"},"img_del":0,"img_signed":[],"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text":"由一般到特殊,90°的对角互补模型哦!
","text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"77a1c9bd47b58e3150246a9ad9969aea"},"img_del":0,"img_signed":[],"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text":"分情况讨论:
","text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"439c0d59436a9480361a296e104a47f2"},"img_del":0,"img_height":625,"img_signed":[],"img_size":19,"img_url":"https://ss2.meipian.me/users/57825749/5d157466cc26c0aea120e884d2b68936.jpg","img_width":941,"is_origin":false,"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0,"watermark":"?meipian-watermark/bucket/ivwen/key/dXNlcnMvNTc4MjU3NDkvNWQxNTc0NjZjYzI2YzBhZWExMjBlODg0ZDJiNjg5MzYuanBn/nickname/54-N6KeB5YS_/userid/NTc4MjU3NDk=/sign/7327c8c162788377d5075709576c4193"},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"6ee8c11e1303dc65ba1317d4917e3672"},"img_del":0,"img_height":569,"img_signed":[],"img_size":20,"img_url":"https://ss2.meipian.me/users/57825749/24505cdbd46a55adb8ffefc01f2f9401.jpg","img_width":907,"is_origin":false,"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0,"watermark":"?meipian-watermark/bucket/ivwen/key/dXNlcnMvNTc4MjU3NDkvMjQ1MDVjZGJkNDZhNTVhZGI4ZmZlZmMwMWYyZjk0MDEuanBn/nickname/54-N6KeB5YS_/userid/NTc4MjU3NDk=/sign/7327c8c162788377d5075709576c4193"},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"b1fd2691506d0e4c2461f4280898aa58"},"img_del":0,"img_height":1411,"img_signed":[],"img_size":50,"img_url":"https://ss2.meipian.me/users/57825749/4e08f160c26a6cb440d687a16e42b828.jpg","img_width":654,"is_origin":false,"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0,"watermark":"?meipian-watermark/bucket/ivwen/key/dXNlcnMvNTc4MjU3NDkvNGUwOGYxNjBjMjZhNmNiNDQwZDY4N2ExNmU0MmI4MjguanBn/nickname/54-N6KeB5YS_/userid/NTc4MjU3NDk=/sign/7327c8c162788377d5075709576c4193"}]},"ext":{"id":358341641,"article_id":402166406,"ip":"223.104.195.149","origin_status":0,"edit_from":0,"client_type":2,"password_v2":"","uv":1,"font_id":0,"title_style":"","rich_text_title":"","gift_switch":1,"deleted_at":0,"recycle_expired_at":0,"share_with_nickname":1,"enable_watermark":1,"music_id":0,"music_source":0,"_auto_update_time":"2025-05-12 12:31:18"},"extend":{"id":151798341,"article_id":402166406,"enable_download":2,"cover_width":365,"cover_height":224}},"author":{"id":57825749,"nickname":"珍见儿","head_img_url":"https://ss2.meipian.me/users/57825749/aaee84ba78634b1ea75835bc2ae14a54.jpg","column_visit":52,"signature":"苔花如米小,也学牡丹开。98年毕业扎根基层的一粒尘埃。","favorite_count":35,"follow_count":50,"follower_count":56,"famous_type":0,"autoplay_music":1,"text_preference":1,"client_type":4,"reward_word":"如果喜欢我的作品,请打赏鼓励哦!","member_type":0,"wechat_id":"ojq1tt5LeR6E1eQkb6hZKxzFVPVU","country":"","province":"","city":"","career":9,"birthday":20240221,"gender":0,"reg_time":1543553876,"e_id":"","bedge_img":"","label_img":"","review_level":1,"enable_reward_switch":false,"enable_water_mark_switch":1,"plainNickname":"珍见儿","member_status":1,"member_img":"","ext":null,"phone_num":"134****3050","head_attach_img":null,"badge":null,"onlive":false,"qualification":null,"biz_info":{"is_biz_user":false,"share_domains":[]},"headwear":{"icon":"","animation":"","config":{},"param":{}},"cover_img_url":"","weibo_id":"","vwen_id":"","im_id":"","yx_im_token":"","last_visit_time":1748758375,"ip_address":"39.144.110.17","device_id":"0e36bde421d7ceeb:02:00:00:00:00:00","reviewer":0,"review_time":0,"account_state":0,"balance":0,"last_contribution_time":0,"member_expire_time":0,"member_qq_group":0,"web_has_login":0,"longtitude":"118.4547300","latitude":"35.5352940","last_client_type":0,"level":0,"province_user":null,"city_user":null,"user_id":57825749,"qq_id":"","apple_id":"","badge_img_url":"","reward_url":"https://www.meipian.cn/wap/reward/view/index.html?mask_id=54r3htmb&author_user_id=57825749&article_title=5%E3%80%812024%E6%B2%B3%E5%8D%97%E4%B8%AD%E8%80%83%E5%87%A0%E4%BD%95%E5%8E%8B%E8%BD%B4%E8%A7%A3%E6%9E%90%E2%80%94%E2%80%94%E2%80%9C%E9%82%BB%E7%AD%89%E5%AF%B9%E8%A1%A5%E5%9B%9B%E8%BE%B9%E5%BD%A2%E2%80%9D","memo_name":""},"content":[{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"709038731e0828fb745655a91eb6335a"},"img_del":0,"img_signed":[],"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text":"山东与河南临省,都是考试大省。2024年河南中考,压轴题,23题,也考了“直角三角形斜边上的中线等于斜边的一半”。此题是一道“新定义”题型,即给出一个学生没有学过的定义,让学生通过阅读去理解这个定义,并且根据这个新定义结合初中所学的知识去解决问题。重在考查学生对新知识的理解掌握并应用的能力。
","text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"e8a9a43aa4d8916a5bb8e9cdcaceffe8"},"img_del":0,"img_signed":[],"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text":"我们先来看看题。
","text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"4698811e315b306403c043c8620f094c"},"img_del":0,"img_height":535,"img_signed":[],"img_url":"https://ss2.meipian.me/users/57825749/938ac83252434c7787206a782d58617e.jpg","img_width":952,"is_origin":false,"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0,"watermark":"?meipian-watermark/bucket/ivwen/key/dXNlcnMvNTc4MjU3NDkvOTM4YWM4MzI1MjQzNGM3Nzg3MjA2YTc4MmQ1ODYxN2UuanBn/nickname/54-N6KeB5YS_/userid/NTc4MjU3NDk=/sign/7327c8c162788377d5075709576c4193"},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"1e7be02aa396d7037366509e932e45b7"},"img_del":0,"img_signed":[],"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text":"23. (10分)综合与实践
在学习特殊四边形的过程中,我们积累了一定的研究经验。请运用已有经验,对“邻等对补四边形”进行研究。
定义:至少有一组邻边相等且对角互补的四边形叫做邻等对补四边形。
(1)操作判断:用分别含有30°和45°角的直角三角形纸板拼出如图1所示的4个四边形,其中是邻等对补四边形的有____ (填序号)。
(2)性质探究根据定义可得出邻等对补四边形的边、角的性质。下面研究与对角线相关的性质。如图2,四边形ABCD是邻等对补四边形,AB = AD ,AC是它的一条对角线。
①写出图中相等的角,并说明理由;
②若BC =m,DC =n,∠BCD = 2a,求AC的长(用含m,n,a的式子表示)。
(3)拓展应用如图3,在Rt△ABC中,∠B=90° ,AB=3,BC =4,分别在边BC ,AC上取点M,N使四边形ABMN是邻等对补四边形。当该邻等对补四边形仅有一组邻边相等时,请直接写出BN的长。
","text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"2cf2fcfa28c88db1741ad9593cfac35e"},"img_del":0,"img_height":1404,"img_signed":[],"img_size":75,"img_url":"https://ss2.meipian.me/users/57825749/e8df816b7943789db91bc3dd6b1c7455.jpg","img_width":982,"is_origin":false,"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0,"watermark":"?meipian-watermark/bucket/ivwen/key/dXNlcnMvNTc4MjU3NDkvZThkZjgxNmI3OTQzNzg5ZGI5MWJjM2RkNmIxYzc0NTUuanBn/nickname/54-N6KeB5YS_/userid/NTc4MjU3NDk=/sign/7327c8c162788377d5075709576c4193"},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"df6e265998e2a6e02f491319ee009e39"},"img_del":0,"img_signed":[],"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text":"这是新定义为背景的综合题。主要考查角平分线的性质、旋转、三角形全等(相似)、解直角三角形、勾股定理,锐角三角函数等知识。此题综合性强,难度大。
","text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"a5f8a94e9a0fbb2c4af91be26f267ea7"},"img_del":0,"img_height":842,"img_signed":[],"img_size":46,"img_url":"https://ss2.meipian.me/users/57825749/c5eaa2682fa9bdd2e07b931c25dceed0.jpg","img_width":1080,"is_origin":false,"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0,"watermark":"?meipian-watermark/bucket/ivwen/key/dXNlcnMvNTc4MjU3NDkvYzVlYWEyNjgyZmE5YmRkMmUwN2I5MzFjMjVkY2VlZDAuanBn/nickname/54-N6KeB5YS_/userid/NTc4MjU3NDk=/sign/7327c8c162788377d5075709576c4193"},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"2cc9cf9b57dfcc652c3650318b63295b"},"img_del":0,"img_signed":[],"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text":"第一问
","text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"8a91be16a2167d76ca372220b828539f"},"img_del":0,"img_signed":[],"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text":"23. (10分)综合与实践
在学习特殊四边形的过程中,我们积累了一定的研究经验。请运用已有经验,对“邻等对补四边形”进行研究。
定义:至少有一组邻边相等且对角互补的四边形叫做邻等对补四边形。
(1)操作判断
用分别含有30°和45°角的直角三角形纸板拼出如图1所示的4个四边形,其中是邻等对补四边形的有____(填序号)。
","text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"2737272d430a49600b10b49534189b61"},"img_del":0,"img_height":229,"img_signed":[],"img_size":12,"img_url":"https://ss2.meipian.me/users/57825749/e944deafbb36e597f8983b59e4b15ef8.jpg","img_width":875,"is_origin":false,"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0,"watermark":"?meipian-watermark/bucket/ivwen/key/dXNlcnMvNTc4MjU3NDkvZTk0NGRlYWZiYjM2ZTU5N2Y4OTgzYjU5ZTRiMTVlZjguanBn/nickname/54-N6KeB5YS_/userid/NTc4MjU3NDk=/sign/7327c8c162788377d5075709576c4193"},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"335e07763ba22c8c459bc3fe3a0a45d4"},"img_del":0,"img_signed":[],"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text":"第一问是对定义的直接考查,只要学生能够读明白概念,对照着概念里的要求去看四边形应该很容易找到正确答案:②④。很好的考察了学生的审题能力。
","text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"7468e52bf50e318627d2fc2f69ec0ccc"},"img_del":0,"img_height":1202,"img_signed":[],"img_size":43,"img_url":"https://ss2.meipian.me/users/57825749/af7c5179be1a6a62ef335faaa2545d96.jpg","img_width":649,"is_origin":false,"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0,"watermark":"?meipian-watermark/bucket/ivwen/key/dXNlcnMvNTc4MjU3NDkvYWY3YzUxNzliZTFhNmE2MmVmMzM1ZmFhYTI1NDVkOTYuanBn/nickname/54-N6KeB5YS_/userid/NTc4MjU3NDk=/sign/7327c8c162788377d5075709576c4193"},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"87bc801a99bbf8bf069f8b18905ec9d6"},"img_del":0,"img_signed":[],"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text":"第二问
","text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"bd4e415bd20a89d10d3179ab2256f1c9"},"img_del":0,"img_height":225,"img_signed":[],"img_size":5,"img_url":"https://ss2.meipian.me/users/57825749/a07fdab909a5fff554364138b112cfa5.jpg","img_width":370,"is_origin":false,"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0,"watermark":"?meipian-watermark/bucket/ivwen/key/dXNlcnMvNTc4MjU3NDkvYTA3ZmRhYjkwOWE1ZmZmNTU0MzY0MTM4YjExMmNmYTUuanBn/nickname/54-N6KeB5YS_/userid/NTc4MjU3NDk=/sign/7327c8c162788377d5075709576c4193"},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"2c6f07f7be5e5f337a8411627aece40e"},"img_del":0,"img_signed":[],"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text":"(2)性质探究根据定义可得出邻等对补四边形的边、角的性质。下面研究与对角线相关的性质。如图2,四边形ABCD是邻等对补四边形,AB = AD ,AC是它的一条对角线。
①写出图中相等的角,并说明理由;
②若BC =m,DC =n,∠BCD = 2a,求AC的长(用含m,n,a的式子表示)。
","text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"4037c6cbba3f0829cb2f93ba5ae89875"},"img_del":0,"img_height":1222,"img_signed":[],"img_size":56,"img_url":"https://ss2.meipian.me/users/57825749/936705c461ee70852665ebf48cf5fabf.jpg","img_width":897,"is_origin":false,"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0,"watermark":"?meipian-watermark/bucket/ivwen/key/dXNlcnMvNTc4MjU3NDkvOTM2NzA1YzQ2MWVlNzA4NTI2NjVlYmY0OGNmNWZhYmYuanBn/nickname/54-N6KeB5YS_/userid/NTc4MjU3NDk=/sign/7327c8c162788377d5075709576c4193"},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"7b1808fe943caec313c6935c25877c00"},"img_del":0,"img_signed":[],"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text":"第(2)①题,学生通过观察可以猜测出两个角相等,但是要证明就需要利用三角形全等、角平分线的判定或者旋转加三角形全等的知识来解决,相对来讲还不是太难。
","text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"0712ec0482f462c2949ee91f75ae19d1"},"img_del":0,"img_signed":[],"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text":"第(2)①,方法很多,下面一一道来。
方法1:通过构造全等三角形证角相等
","text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"0165fecd4a71afcb983ae92ac9610197"},"img_del":0,"img_signed":[],"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text":"可以截长或补短证全等
","text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"28de7ba4167f9801c4657354b511c046"},"img_del":0,"img_signed":[],"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text":"延长CB至点E,使BE=DC,连接AE。
","text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"8fd1138eef55e7a55d1139779aa08320"},"img_del":0,"img_height":384,"img_signed":[],"img_size":11,"img_url":"https://ss2.meipian.me/users/57825749/515f526aff730eb6331bf68694fa31a9.jpg","img_width":996,"is_origin":false,"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0,"watermark":"?meipian-watermark/bucket/ivwen/key/dXNlcnMvNTc4MjU3NDkvNTE1ZjUyNmFmZjczMGViNjMzMWJmNjg2OTRmYTMxYTkuanBn/nickname/54-N6KeB5YS_/userid/NTc4MjU3NDk=/sign/7327c8c162788377d5075709576c4193"},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"9d9456e293cd6ba94e94115b87d1e96e"},"img_del":0,"img_signed":[],"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text":"方法2:也可以直接旋转某边到某△,证三点共线。
","text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"66c6955525f308d3e2ee0e7eb73eefee"},"img_del":0,"img_height":1306,"img_signed":[],"img_size":56,"img_url":"https://ss2.meipian.me/users/57825749/927efebe84be9ae6771805cc92bf1280.jpg","img_width":902,"is_origin":false,"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0,"watermark":"?meipian-watermark/bucket/ivwen/key/dXNlcnMvNTc4MjU3NDkvOTI3ZWZlYmU4NGJlOWFlNjc3MTgwNWNjOTJiZjEyODAuanBn/nickname/54-N6KeB5YS_/userid/NTc4MjU3NDk=/sign/7327c8c162788377d5075709576c4193"},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"5a2802295f7cce78c444017037fc1609"},"img_del":0,"img_signed":[],"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text":"方法3:双垂直法(向两边作垂线)
","text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"0787feba242c57a80dcc06b198f0f172"},"img_del":0,"img_signed":[],"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text":"通过证角平分线得角相等
过点A分别作BC,DC的垂线,(双垂线法)证明△ABF≌△ADE (AAS) ,从而得到AE=AF,利用“到角两边距离相等的点在角平分线上”得出AC是∠BCD的角平分线。
","text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"4591b9835f7bde59e37723b43e9e07bd"},"img_del":0,"img_height":546,"img_signed":[],"img_size":14,"img_url":"https://ss2.meipian.me/users/57825749/dbfe2ab34c6f535c5466bf8bd1440a8d.jpg","img_width":711,"is_origin":false,"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0,"watermark":"?meipian-watermark/bucket/ivwen/key/dXNlcnMvNTc4MjU3NDkvZGJmZTJhYjM0YzZmNTM1YzU0NjZiZjhiZDE0NDBhOGQuanBn/nickname/54-N6KeB5YS_/userid/NTc4MjU3NDk=/sign/7327c8c162788377d5075709576c4193"},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"fc14aebff80b17457ca2edd5e4857fa9"},"img_del":0,"img_signed":[],"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text":"方法4:做辅助圆
","text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"e70a74bd00f5ff5eeb2d1123f7b452f6"},"img_del":0,"img_signed":[],"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text":"方法3: A、B、C、D四点共圆,由弦相等得出所对的圆周角相等。
","text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"97433823d0770dd0f08e79941672b371"},"img_del":0,"img_height":854,"img_signed":[],"img_size":45,"img_url":"https://ss2.meipian.me/users/57825749/c5452fe7c40c62ce432323d596b54c29.jpg","img_width":909,"is_origin":false,"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0,"watermark":"?meipian-watermark/bucket/ivwen/key/dXNlcnMvNTc4MjU3NDkvYzU0NTJmZTdjNDBjNjJjZTQzMjMyM2Q1OTZiNTRjMjkuanBn/nickname/54-N6KeB5YS_/userid/NTc4MjU3NDk=/sign/7327c8c162788377d5075709576c4193"},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"5c2577a4c5b2ba67009520242a71d306"},"img_del":0,"img_signed":[],"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text":"第(2)②题要运用到锐角三角函数的知识,就有一定的难度。
","text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"26152f2f23ed59bc137cbc8846ad2181"},"img_del":0,"img_signed":[],"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text":"②过点A作AF⊥EC,垂足为点F。
","text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"25f18304372d6379eb8aa7a21fc9a740"},"img_del":0,"img_height":377,"img_signed":[],"img_url":"https://ss2.meipian.me/users/57825749/60b1394b8a1b48efaa16ba3abb1823f8.jpg","img_width":952,"is_origin":false,"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0,"watermark":"?meipian-watermark/bucket/ivwen/key/dXNlcnMvNTc4MjU3NDkvNjBiMTM5NGI4YTFiNDhlZmFhMTZiYTNhYmIxODIzZjguanBn/nickname/54-N6KeB5YS_/userid/NTc4MjU3NDk=/sign/7327c8c162788377d5075709576c4193"},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"ef482870861375b60827b35396af5366"},"img_del":0,"img_signed":[],"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text":"自己完成吧。
","text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"52f3cd17dff34b571a53df299e5a99cb"},"img_del":0,"img_height":1328,"img_signed":[],"img_size":64,"img_url":"https://ss2.meipian.me/users/57825749/e690f8676589f1737302ce0f8e3bcc57.jpg","img_width":890,"is_origin":false,"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0,"watermark":"?meipian-watermark/bucket/ivwen/key/dXNlcnMvNTc4MjU3NDkvZTY5MGY4Njc2NTg5ZjE3MzczMDJjZTBmOGUzYmNjNTcuanBn/nickname/54-N6KeB5YS_/userid/NTc4MjU3NDk=/sign/7327c8c162788377d5075709576c4193"},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"7f476790b448732f3b94ef190308ee0d"},"img_del":0,"img_signed":[],"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text":"第三问
","text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"61e08b36f90eb52f9a8181a7fbf79e2d"},"img_del":0,"img_signed":[],"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text":"第(3)问要从四种不同的情况,紧扣定义来逐一分析,在求值上要用到的解锐角三角函数的知识和勾股定理知识以及它们的综合运用,对学生的数学素养的要求较高。难度相对较大。
","text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"df31c79442a9e8fa01f9cbd27b492edc"},"img_del":0,"img_signed":[],"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text":"(3)拓展应用
如图3,在Rt△ABC中,∠B=90° ,AB=3,BC =4,分别在边BC ,AC上取点M,N使四边形ABMN是邻等对补四边形。当该邻等对补四边形仅有一组邻边相等时,请直接写出BN的长。
","text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"8a37e6f048554f2ba8e645349e9f6fe3"},"img_del":0,"img_signed":[],"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text":"由一般到特殊,90°的对角互补模型哦!
","text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"77a1c9bd47b58e3150246a9ad9969aea"},"img_del":0,"img_signed":[],"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text":"分情况讨论:
","text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"439c0d59436a9480361a296e104a47f2"},"img_del":0,"img_height":625,"img_signed":[],"img_size":19,"img_url":"https://ss2.meipian.me/users/57825749/5d157466cc26c0aea120e884d2b68936.jpg","img_width":941,"is_origin":false,"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0,"watermark":"?meipian-watermark/bucket/ivwen/key/dXNlcnMvNTc4MjU3NDkvNWQxNTc0NjZjYzI2YzBhZWExMjBlODg0ZDJiNjg5MzYuanBn/nickname/54-N6KeB5YS_/userid/NTc4MjU3NDk=/sign/7327c8c162788377d5075709576c4193"},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"6ee8c11e1303dc65ba1317d4917e3672"},"img_del":0,"img_height":569,"img_signed":[],"img_size":20,"img_url":"https://ss2.meipian.me/users/57825749/24505cdbd46a55adb8ffefc01f2f9401.jpg","img_width":907,"is_origin":false,"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0,"watermark":"?meipian-watermark/bucket/ivwen/key/dXNlcnMvNTc4MjU3NDkvMjQ1MDVjZGJkNDZhNTVhZGI4ZmZlZmMwMWYyZjk0MDEuanBn/nickname/54-N6KeB5YS_/userid/NTc4MjU3NDk=/sign/7327c8c162788377d5075709576c4193"},{"audio_del":0,"audio_music_id":0,"ext":{"unique_id":"b1fd2691506d0e4c2461f4280898aa58"},"img_del":0,"img_height":1411,"img_signed":[],"img_size":50,"img_url":"https://ss2.meipian.me/users/57825749/4e08f160c26a6cb440d687a16e42b828.jpg","img_width":654,"is_origin":false,"is_template_subtitle":false,"location_del":0,"sectionPublished":true,"sell_del":0,"source":0,"subtitle_state":0,"text_del":0,"type":1,"video_del":0,"video_thumbnail_del":0,"vote_del":0,"watermark":"?meipian-watermark/bucket/ivwen/key/dXNlcnMvNTc4MjU3NDkvNGUwOGYxNjBjMjZhNmNiNDQwZDY4N2ExNmU0MmI4MjguanBn/nickname/54-N6KeB5YS_/userid/NTc4MjU3NDk=/sign/7327c8c162788377d5075709576c4193"}],"mark":0,"gift":{"icon":"https://ss2.meipian.me/app/article_gift_flower_icon_v2.png","amount":0,"mix_icon":"","mix_persent":0,"display":1},"topic":{"has_vote":0,"vote_rank":0,"vote_count":0},"visitor":{"is_share":false,"visitor_id":0,"visitor_user_id":null,"from":null,"channel":null,"theme":null,"in_app":false,"from_web":false,"self_view":false,"timestamp":null,"sign":null,"is_from_app_launch":null,"show_praise":null,"praised":null,"wechat_sign":null,"token":null,"password_v2":null,"visitor_open_id":null,"share_depth":"","visitor_union_id":null,"ua_source":"web","mpuuid":"","isFan":0,"relation_type":0,"member_status":0,"member_img":"","head_attach_img":"","headwear":null,"request":{"attributes":{},"request":{},"query":{},"server":{},"files":{},"cookies":{},"headers":{}},"is_new_guest":0,"first_share_uid":0,"risk_cheat_info":"","is_cheat_risk":false,"page_visit_id":"PC_894240722683c5a20c32ab2.79570659","is_good":null,"auth_url":null,"from_auth_callback":0},"watermark":"?watermark/3/image/aHR0cDovL3N0YXRpYzItc3JjLml2d2VuLmNvbS9sb2dvd2F0ZXIucG5n/dy/50/text/QCDnj43op4HlhL8=/fontsize/320/dx/10/dy/30/fill/I0ZGRkZGRg==/text/576O56-H5Y-377yaNTc4MjU3NDk=/fontsize/320/dx/10/dy/10/fill/I0ZGRkZGRg=="}; var detail = ARTICLE_DETAIL; window.model = { detail: ARTICLE_DETAIL }