<h3><strong> 现在中</strong><a target="_blank"><strong>小学</strong></a><strong>最流行的动脑游戏要算是魔方了,现在魔方的玩法也是多种多样,很多孩子想学,那么我们一起来开动脑筋吧</strong></h3></br><h3> <strong>魔方有多少种可以达到的状态?答案是 43252003274489856000 约 4000 亿亿。<br></br></strong></h3></br><h3> <h3><strong> 算法: 8 个角方块排列在 8 个位置, 12 个棱方块排列在 12 个位置,共有 8! × 12 !种。又每个棱方块有 2 个朝向,每个角方块有 3 个朝向, 共 3^8 × 2^12 种。因此魔方的状态数是 8! × 12 !× 3^8 × 2^12 = 519024039293878272000 种,51902亿亿以上。</strong><br><br></h3><br><h3><br><br><strong> 但在 20 个方块中, 18 个位置确定,另外 2 个位置也就确定了。因此要去掉因子 2 !。在 8 个角方块中, 7 个朝向确定,第 8 个朝向也就确定了;在 12 个棱方块中, 11 个朝向确定,第 12 个朝向也就确定了。这样要再去掉 3 × 2 因子,实际是上面数的 1/12 ,即总数 8! × 12 !× 3^7 × 2^11/2=43252003274489856000 .</strong></h3><br><h3><br><br><strong> 从另一个角度考虑上面的除数 12 .如果我们确定了 6 种颜色,每种颜色涂在魔方的1 个表面上的9个小方块上。然后然后我们拆开魔方,再打乱了重新拼装起来,那么并不是所得到的每个魔方都能还原为初始状态。具体说,有519024039293878272000 种拼法,可以分为 12 类,每类 43252003274489856000 种。同类里任何两个状态可以相互转换,而不同类间不能转换。</strong></h3><br><h3><strong>看完了 是不是大吃一惊呢 ?? 如果想学习 来找李老师</strong></h3><br><h3></h3> <h3><font color="#010101"><a href="https://mp.weixin.qq.com/s/2W8DpJpX36MdO5thMr-6Bg" >查看原文</a> 原文转载自微信公众号,著作权归作者所有</font></h3>